Appl Environ Microbiol
December 2024
Unlabelled: Advances in DNA metabarcoding have greatly expanded our knowledge of microbial communities in recent years. Pipelines and parameters have been tested extensively for bacterial metabarcoding using the 16S rRNA gene and best practices are largely established. For fungal metabarcoding using the internal transcribed spacer (ITS) gene, however, only a few studies have considered how such pipelines and parameters can affect community prediction.
View Article and Find Full Text PDFProtein oligomerization regulates many critical physiological processes, and its dysregulation can contribute to dysfunction and diseases. Elucidating the assembly pathways and quantifying their underlying thermodynamic and kinetic parameters are crucial for a comprehensive understanding of biological processes and for advancing therapeutics targeting abnormal protein oligomerization. Established binding assays, with limited mass precision, often rely on simplified models for data interpretation.
View Article and Find Full Text PDFInteractions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) present in cell membranes are implicated in a wide range of biological processes. However, studying GSL binding is hindered by the paucity of purified GSLs and the weak affinities typical of monovalent GBP-GSL interactions. Native mass spectrometry (nMS) performed using soluble model membranes is a promising approach for the discovery of GBP ligands, but the detection of weak interactions remains challenging.
View Article and Find Full Text PDFBackground: Pulmonary transit time (PTT) can be measured automatically from arterial input function (AIF) images of dual sequence first-pass perfusion imaging. PTT has been validated against invasive cardiac catheterisation correlating with both cardiac output and left ventricular filling pressure (both important prognostic markers in heart failure). We hypothesized that prolonged PTT is associated with clinical outcomes in patients with heart failure.
View Article and Find Full Text PDFSiglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results.
View Article and Find Full Text PDFGlycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance.
View Article and Find Full Text PDFDetermining the ground and excited state properties of materials is considered one of the most promising applications of quantum computers. On near-term hardware, the limiting constraint on such simulations is the requisite circuit depths and qubit numbers, which currently lie well beyond near-term capabilities. Here we develop a quantum algorithm which reduces the estimated cost of material simulations.
View Article and Find Full Text PDFEnzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P.
View Article and Find Full Text PDFCellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Aims: Left ventricular filling pressure (LVFP) can be estimated from cardiovascular magnetic resonance (CMR). We aimed to investigate whether CMR-derived LVFP is associated with signs, symptoms, and prognosis in patients with recently diagnosed heart failure (HF).
Methods And Results: This study recruited 454 patients diagnosed with HF who underwent same-day CMR and clinical assessment between February 2018 and January 2020.
Objectives: To determine baseline characteristics predictive of left ventricular ejection fraction (LVEF) recovery in patients diagnosed with heart failure with reduced ejection fraction (HFrEF) and presumed non-ischaemic aetiology.
Methods: We prospectively recruited patients who were diagnosed with HFrEF (LVEF ≤40%) on echocardiography and subsequently underwent cardiac MRI. Patients were excluded if they had a known history of coronary artery disease (>70% on invasive coronary angiography), myocardial infarction, coronary revascularisation or anginal symptoms.
Native mass spectrometry (nMS) screening of natural glycan libraries against glycan-binding proteins (GBPs) is a powerful tool for ligand discovery. However, as the glycan concentrations are unknown, affinities cannot be measured directly from natural libraries. Here, we introduce ncentration-dependent (COIN)-nMS, which enables quantitative screening of natural glycan libraries by exploiting slow mixing of solutions inside a nanoflow electrospray ionization emitter.
View Article and Find Full Text PDFApplication of the prostate-specific antigen (PSA) test, which measures PSA levels in blood, is standard in prostate cancer (PCa) screening. However, because PSA levels may be elevated for reasons other than PCa, it leads to high rates of misdiagnosis and overtreatment. Recently, alteration in the -glycan sialylation of PSA, specifically increased levels of α2-3-linked -acetylneuraminic acid (α2-3-Neu5Ac or α2-3-sialic acid), was identified as a potential biomarker for clinically significant PCa.
View Article and Find Full Text PDFFungus-growing ants depend on a fungal mutualist that can fall prey to fungal pathogens. This mutualist is cultivated by these ants in structures called fungus gardens. Ants exhibit weeding behaviors that keep their fungus gardens healthy by physically removing compromised pieces.
View Article and Find Full Text PDFIntroduction: Malaria is a devastating infectious illness caused by protozoan parasites. The circumsporozoite protein (CSP) on sporozoites binds heparan sulfate proteoglycan (HSPG) receptors for liver invasion, a critical step for prophylactic and therapeutic interventions.
Methods: In this study, we characterized the αTSR domain that covers region III and the thrombospondin type-I repeat (TSR) of the CSP using various biochemical, glycobiological, bioengineering, and immunological approaches.
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft.
View Article and Find Full Text PDFImmunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer.
View Article and Find Full Text PDFBacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem.
View Article and Find Full Text PDFSynthase-dependent secretion systems are a conserved mechanism for producing exopolysaccharides in Gram-negative bacteria. Although widely studied, it is not well understood how these systems are organized to coordinate polymer biosynthesis, modification, and export across both membranes and the peptidoglycan. To investigate how synthase-dependent secretion systems produce polymer at a molecular level, we determined the crystal structure of the AlgK-AlgX (AlgKX) complex involved in Pseudomonas aeruginosa alginate exopolysaccharide acetylation and export.
View Article and Find Full Text PDFInteractions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles.
View Article and Find Full Text PDFWbbB, a lipopolysaccharide O-antigen synthesis enzyme from Raoultella terrigena, contains an N-terminal glycosyltransferase domain with a highly modified architecture that adds a terminal β-Kdo (3-deoxy-D-manno-oct-2-ulosonic acid) residue to the O-antigen saccharide, with retention of stereochemistry. We show, using mass spectrometry, that WbbB forms a covalent adduct between the catalytic nucleophile, Asp232, and Kdo. We also determine X-ray structures for the CMP-β-Kdo donor complex, for Kdo-adducts with D232N and D232C WbbB variants, for a synthetic disaccharide acceptor complex, and for a ternary complex with both a Kdo-adduct and the acceptor.
View Article and Find Full Text PDF