Purpose: The objective of this study was to track the fate of iron-labeled, multipotent stromal cells (MSC) after their direct transplantation into mice with spinal cord injuries using magnetic resonance imaging (MRI).
Procedures: Mice with spinal cord injuries received a direct transplant of (1) live MSC labeled with micron-sized iron oxide particles (MPIO); (2) dead, MPIO-labeled MSC; (3) unlabeled MSC; or (4) free MPIO and were imaged at 3 T for 6 weeks after transplantation.
Results: Live, iron-labeled MSC appeared as a well-defined region of signal loss in the mouse spinal cord at the site of transplant.
This study is a thorough examination of the effects of the DNA polymerase inhibitor aphidicolin on the nuclear cycle and cell cycle progression characteristics, as well as their reversibility, in Giardia intestinalis. Giardia trophozoites are arrested in the G1/S-junction after aphidicolin treatment according to their DNA content. However, cell growth continues and trophozoites arrested with aphidicolin resemble cells in the G2 phase and trophozoites in ageing cultures.
View Article and Find Full Text PDFThe feasibility of performing high-resolution in vivo magnetic resonance imaging (MRI) to visualize the injured mouse spinal cord using a three-dimensional (3D)-FIESTA (fast imaging employing steady state acquisition) pulse sequence, in a clip compression injury model, is presented. Images were acquired using a 3-Tesla clinical whole-body MR system equipped with a high-performance gradient coil insert. High-resolution mouse cord images were used to detect and monitor the cord lesions for 6 weeks after spinal cord injury (SCI).
View Article and Find Full Text PDFGiardia intestinalis is an ancient protist that causes the most commonly reported human diarrheal disease of parasitic origin worldwide. An intriguing feature of the Giardia cell is the presence of two morphologically similar nuclei, generally considered equivalent, in spite of the fact that their karyotypes are unknown. We found that within a single cell, the two nuclei differ both in the number and the size of chromosomes and that representatives of two major genetic groups of G.
View Article and Find Full Text PDF