Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis.
View Article and Find Full Text PDFPurine metabolism plays a ubiquitous role in the physiology of and other mycobacteria. The purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is essential for growth ; however, its precise role in physiology is unclear. Membrane-permeable prodrugs of specifically designed HGPRT inhibitors arrest the growth of and represent potential new antituberculosis compounds.
View Article and Find Full Text PDFMetabolism of purine bases remains poorly understood in the pathogenic bacterium Mycobacterium tuberculosis and closely related, nonpathogenic Mycobacterium smegmatis (Msm). To gain insight into the purine metabolism in mycobacteria, we tested uptake of purine bases with a ΔpurF Msm mutant with an inactive purine de novo biosynthesis pathway and confirmed that hypoxanthine and guanine, but not xanthine, can serve as nucleotide precursors for recycling in the salvage pathway. Further, we focused on purine catabolism in wild-type (wt) Msm.
View Article and Find Full Text PDFLaccases are multi-copper oxidoreductases with broad biotechnological applications. Here, we report detailed biochemical characterization of purified recombinant laccases originating from (MtL) and (TtL). We identified optimal conditions for decolorization of commercial dyes and textile wastewater samples.
View Article and Find Full Text PDFObjectives: To improve the storage stability and reusability of various yeast strains and species by immobilization in polyvinyl alcohol (PVA) hydrogel particles.
Results: Debaryomyces hansenii, Pichia sorbitophila, Saccharomyces cerevisiae, Yarrowia lipolytica, and Zygosaccharomyces rouxii were immobilized in PVA particles using LentiKats technology and stored in sterile water at 4 °C. The immobilization improved the survival of all species; however, the highest storage stability was achieved for S.
Laccases are enzymes with a broad range of biotechnological applications and have, for example, the ability to oxidize many xenobiotics including synthetic dyes. In order to obtain an efficient laccase for the decolorization of dyes which spoil wastewater from the textile industry, genes encoding three various laccase enzymes were expressed in Saccharomyces cerevisiae. The expression of laccases from ascomycete Myceliophthora thermophila (MtL), and two basidiomycetes Trametes versicolor (TvL) and Trametes trogii (TtL) was optimized via selection of plasmids, promoters, media composition, and cultivation conditions.
View Article and Find Full Text PDF