This paper presents an experimental evaluation of two types of light-emitting diode (LED)-based distributed transmitters, namely an LED strip and an LED-coupled side-emitting optical fiber, in both laboratory and wearable optical camera communication (OCC) systems. We study the system performance in terms of success of reception (SoR) with regard to the transmission distance. The best value of SoR is achieved when the camera is facing directly to the transmitter (T) from a close distance of 1 m.
View Article and Find Full Text PDFWe present a distributed receiver for visible light communication based on a side-emitting optical fiber. We show that 500 kbps data rate can be captured with a bit-error rate below the forward-error correction limit of 3.8·10 with a light-emitting diode (LED) transmitter 25 cm away from the fiber, whereas by increasing the photodetector gain and reducing the data rate down to 50 kbps, we improve the LED-fiber distance significantly up to 4 m.
View Article and Find Full Text PDFWe present a design approach for a long-distance optical camera communication (OCC) system using side-emitting fibers as distributed transmitters. We demonstrate our approach feasibility by increasing the transmission distance by two orders up to 40 m compared to previous works. Furthermore, we explore the effect of the light-emitting diode (LED) modulation frequency and rolling shutter camera exposure time on inter-symbol interference and its effective mitigation.
View Article and Find Full Text PDF