A non-metal covalent hybrid of fullerene and graphene was synthesized in one step fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C and the high conductivity and large surface area of graphene.
View Article and Find Full Text PDFThis article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.
View Article and Find Full Text PDFSeveral concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity.
View Article and Find Full Text PDFPolymeric one-dimensional (1D) triazole-based Fe spin crossover nanoparticles have been entrapped in pluronic P123 matrix, forming nanorods in which the interaction between host (P123) and guest (Fe complex) promoted high reproducibility of the spin crossover process, significant shifts of the transition temperatures (T↑=370 K, T↓=338 K for the P123 entrapped material vs the literature values of T↑=358 K, T↓=341 K for the neat/polymer free system) and larger magnetic hysteresis width.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSuperconductivity in polycrystalline and thin-film MgB2 is strongly affected by the termination of its surface, but a reliable determination of the surface termination is still a challenging task of surface chemistry. Here, the surface properties of superconducting MgB2 were investigated using a combination of inverse gas chromatography and van der Waals corrected density functional theory calculations. The dispersive surface energy was measured as a function of the surface coverage and its value (58 mJ m-2 to 48 mJ m-2) was verified by high-level non-local EXX + RPA calculations, which predicted that the dispersive contribution to the cleavage energy was 56 mJ m-2.
View Article and Find Full Text PDFBackground And Objective: MicroRNA (miRNA) are transcriptional regulators implicated in pulmonary sarcoidosis and packaged in extracellular vesicles (EV) during cellular communication. We characterized EV and investigated miRNA expression in bronchoalveolar lavage (BAL) fluid from sarcoidosis patients.
Methods: EV were characterized for size(s) using dynamic light scattering and transmission electron microscopy (TEM) analysis and protein markers by immunoblotting.
Nanomaterials have a high surface-to-mass ratio and their surface properties significantly affect their features and application potential. Phosphorene, a single layer of black phosphorus (BP), was the first homoatomic two-dimensional material to be prepared after the discovery of graphene. The structure of phosphorene resembles the honeycomb arrangement of graphene, but its layers are buckled and highly anisotropic.
View Article and Find Full Text PDFLayered transition metal dichalcogenides (TMDs) are at the forefront of materials research. One of the most important applications of these materials is their electrocatalytic activity towards hydrogen evolution, and these materials are suggested to replace scarce platinum. Whilst there are significant efforts towards this goal, there are various reports of electrocatalysis of MoS (which is the most commonly tested TMD) with large variations of the reported electrocatalytic effect of the material, with overpotential varying by several hundreds of millivolts.
View Article and Find Full Text PDFHexagonal mesoporous silica (HMS)-supported copper oxides (CuO/HMS) have been prepared by a sol-gel method and characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy, N sorption, inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), H temperature-programed reduction (TPR), NH temperature-programed desorption (TPD), and high-resolution (HR)-TEM techniques. An analysis of these results revealed a mesoporous material system with a high surface area (974 m g ) and uniform pore-size distribution. The catalytic efficacy of CuO on the HMS support with varying Cu loadings (1, 3, 5, 10, and 15 wt %) was investigated for the transformation of aldehydes to primary amides; 3 wt % CuO/HMS exhibited good catalytic performance with good to excellent yields of amides (60-92 %) in benign aqueous medium.
View Article and Find Full Text PDFMaterials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups.
View Article and Find Full Text PDFEfficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene.
View Article and Find Full Text PDFNanoscale biocompatible photoluminescence (PL) thermometers that can be used to accurately and reliably monitor intracellular temperatures have many potential applications in biology and medicine. Ideally, such nanothermometers should be functional at physiological pH across a wide range of ionic strengths, probe concentrations, and local environments. Here, we show that water-soluble N,S-co-doped carbon dots (CDs) exhibit temperature-dependent photoluminescence lifetimes and can serve as highly sensitive and reliable intracellular nanothermometers.
View Article and Find Full Text PDFSuperparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability.
View Article and Find Full Text PDFDoping of graphene materials with heteroatoms is important as it can change their electronic and electrochemical properties. Here, graphene is co-doped with n-type dopants such as phosphorus and halogen (Cl, Br, I). Phosphorus and halogen are introduced through the treatment of graphene oxide with PX gas (PCl , PBr , and PI ).
View Article and Find Full Text PDFProving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution.
View Article and Find Full Text PDFCitrinin is a nephrotoxic mycotoxin which can be synthesized by Monascus mold during the fermentation process in foods. Monascus, generally described as red mold, is a red-pigmented filamentous fungus attracting a great interest for the production of natural dyes and cholesterol-lowering statins. We individuated a specie of Monascus producing high amount of natural dyes.
View Article and Find Full Text PDFGraphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature.
View Article and Find Full Text PDFA facile synthesis based on the addition of ascorbic acid to a mixture of Na2 PdCl4, K2 PtCl6, and Pluronic P123 results in highly branched core-shell nanoparticles (NPs) with a micro-mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core-shell NPs, which differs from the traditional seed-mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields.
View Article and Find Full Text PDFFluorographene (FG) is a two-dimensional graphene derivative with promising application potential; however, its reactivity is not understood. We have systematically explored its reactivity in vacuum and polar environments. The C-F bond dissociation energies for homo- and heterolytic cleavage are above 100 kcal/mol, but the barrier of SN2 substitution is significantly lower.
View Article and Find Full Text PDFWe present the first example of covalent chemistry on fluorographene, enabling the attachment of -SH groups through nucleophilic substitution of fluorine in a polar solvent. The resulting thiographene-like, 2D derivative is hydrophilic with semiconducting properties and bandgap between 1 and 2 eV depending on F/SH ratio. Thiofluorographene is applied in DNA biosensing by electrochemical impedance spectroscopy.
View Article and Find Full Text PDFWe present a simple approach towards highly efficient solid-state luminophores with strong deep blue emission and a record high photoluminescence quantum yield of 60% by embedding water-soluble N,S-co-doped carbon dots into a polyhedral oligomeric silsesquioxane (POSS) matrix.
View Article and Find Full Text PDF