Human-mediated dispersal of non-native earthworms can cause substantial changes to the functioning and composition of ecosystems previously earthworm-free. Some of these earthworm species have the potential to "geoengineer" soils and increase plant nitrogen (N) uptake. Yet the possible consequences of increased plant N concentrations on rodent grazing remains poorly understood.
View Article and Find Full Text PDFMetabarcoding of environmental DNA constitutes a state-of-the-art tool for environmental studies. One fundamental principle implicit in most metabarcoding studies is that individual sample amplicons can still be identified after being pooled with others-based on their unique combinations of tags-during the so-called demultiplexing step that follows sequencing. Nevertheless, it has been recognized that tags can sometimes be changed (i.
View Article and Find Full Text PDFSci Total Environ
February 2023
Human introductions have resulted in earthworms establishing in the Arctic, species known to cause cascading ecosystem change. However, few quantitative outdoor experiments have been performed that describe how these soil modifying earthworms are reshaping structures in tundra soils. In this study, we used three-dimensional (3-D) X-ray images of soil cores (approximately 10 cm diameter, 20 cm height, N = 48) to assess how earthworms (Aporrectodea sp.
View Article and Find Full Text PDFOver the last decade, an increasing number of studies have used soundscapes to address diverse ecological questions. Sound represents one of the few sources of information capable of providing in situ insights into processes occurring within opaque soil matrices. To date, the use of soundscapes for soil macrofauna monitoring has been experimentally tested only in controlled laboratory environments.
View Article and Find Full Text PDFContrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.
View Article and Find Full Text PDFPharmaceutically active compounds (PhACs) have been shown to accumulate in aquatic and riparian food-webs. Yet, our understanding of how temperature, a key environmental factor in nature, affects uptake, biotransformation, and the subsequent accumulation of PhACs in aquatic organisms is limited. In this study, we tested to what extent bioconcentration of an anxiolytic drugs (temazepam and oxazepam) is affected by two temperature regimes (10 and 20 °C) and how the temperature affects the temazepam biotransformation and subsequent accumulation of its metabolite (oxazepam) in aquatic organisms.
View Article and Find Full Text PDFIt is generally expected that biotransformation and excretion of pharmaceuticals occurs similarly in fish and mammals, despite significant physiological differences. Here, we exposed European perch (Perca fluviatilis) to the benzodiazepine drug temazepam at a nominal concentration of 2 µg L for 10 days. We collected samples of blood plasma, muscle, and brain in a time-dependent manner to assess its bioconcentration, biotransformation, and elimination over another 10 days of depuration in clean water.
View Article and Find Full Text PDFA current theory in environmental science states that dissolved anxiolytics (oxazepam) from wastewater effluents can reduce anti-predator behavior in fish with potentially negative impacts on prey fish populations. Here, we hypothesize that European perch () populations being exposed to oxazepam show reduced anti-predator behavior, which has previously been observed for exposed isolated fish in laboratory studies. We tested our hypothesis by exposing a whole-lake ecosystem, containing both perch (prey) and northern pike (; predator), to oxazepam while tracking fish behavior before and after exposure in the exposed lake as well as in an unexposed nearby lake (control).
View Article and Find Full Text PDFArctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them.
View Article and Find Full Text PDFThicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging.
View Article and Find Full Text PDFBehavioral traits measured in laboratory settings are commonly used when predicting ecological effects and evolutionary outcomes in natural systems. However, uncertainties regarding the relevance of simplified lab-based behavioral tests for complex natural environments have created doubts about the use of these tests within aquatic ecology and ecotoxicology. In this study, we scrutinize the assumption that fish performance in six commonly applied behavioral assays has relevance for in situ behavior, by comparing individual behavior tracked in both artificial laboratory settings as well as in two natural lakes.
View Article and Find Full Text PDFArctic plant growth is predominantly nitrogen (N) limited. This limitation is generally attributed to slow soil microbial processes due to low temperatures. Here, we show that arctic plant-soil N cycling is also substantially constrained by the lack of larger detritivores (earthworms) able to mineralize and physically translocate litter and soil organic matter.
View Article and Find Full Text PDFSoil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass.
View Article and Find Full Text PDFSci Total Environ
October 2019
Hatchery-reared salmon smolt used for supplementary stocking often display poor migration behavior compared to wild smolt, which reduces the success of this management action. Oxazepam, an anxiolytic drug, has been shown to intensify salmon smolt migration in mesocosm experiments, and treatment with this drug has, therefore, been suggested as a management option to improve downstream smolt migration. In this study, we tested this by assessing migration performance of hatchery-reared Atlantic salmon (Salmo salar) smolt along a 21-km long natural river-to-sea migration route in a boreal river in Northern Sweden.
View Article and Find Full Text PDFWith the ability to resist biodegradation and exert therapeutic effects at low concentrations, pharmaceutical contaminants have become environmental stressors for wildlife. One such contaminant is the anxiolytic oxazepam, a psychoactive pharmaceutical that is frequently detected in surface waters globally. Despite growing interest in understanding how wildlife respond to anxiolytics, synergistic effects of pharmaceuticals and other abiotic (e.
View Article and Find Full Text PDFPharmaceuticals entering aquatic ecosystems via wastewater effluents are of increasing concern for wild animals. Because some pharmaceuticals are designed to modulate human behaviour, measuring the impacts of exposure to pharmaceuticals on fish behaviour has become a valuable endpoint. While laboratory studies have shown that pharmaceuticals can affect fish behaviour, there is a lack of understanding if behaviour is similarly affected in natural environments.
View Article and Find Full Text PDFHormonal growth promoters (HGPs), widely used in beef cattle production globally, make their way into the environment as agricultural effluent-with potential impacts on aquatic ecosystems. One HPG of particular concern is 17β-trenbolone, which is persistent in freshwater habitats and can affect the development, morphology and reproductive behaviors of aquatic organisms. Despite this, few studies have investigated impacts of 17β-trenbolone on non-reproductive behaviors linked to growth and survival, like boldness and predator avoidance.
View Article and Find Full Text PDFAquatic systems receive a wide range of pharmaceuticals that may have adverse impacts on aquatic wildlife. Among these pharmaceuticals, antihistamines are commonly found, and these substances have the potential to influence the physiology of aquatic invertebrates. Previous studies have focused on how antihistamines may affect behaviours of aquatic invertebrates, but these studies probably do not capture the full consequences of antihistamine exposure, as traditional recording techniques do not capture important animal movements occurring at the scale of milliseconds, such as prey escape responses.
View Article and Find Full Text PDFVideo analysis of animal behaviour is widely used in fields such as ecology, ecotoxicology, and evolutionary research. However, when tracking multiple animals, occlusion and crossing are problematic, especially when the identity of each individual needs to be preserved. We present a new algorithm, ToxId, which preserves the identity of multiple animals by linking trajectory segments using their intensity histogram and Hu-moments.
View Article and Find Full Text PDFSci Total Environ
February 2018
An increasing number of short-term laboratory studies on fish reports behavioral effects from exposure to aquatic contaminants or raised carbon dioxide levels affecting the GABA receptor. However, how such GABAergic behavioral modifications (GBMs) impact populations in more complex natural systems is not known. In this study, we induced GBMs in European perch (Perca fluviatilis) via exposure to a GABA agonist (oxazepam) and followed the effects on growth and survival over one summer (70days) in replicated pond ecosystems.
View Article and Find Full Text PDFEnvironmental pollution by pharmaceuticals is increasingly recognized as a major threat to aquatic ecosystems worldwide. A complex mix of pharmaceuticals enters waterways via treated wastewater effluent and many remain biochemically active after the drugs reach aquatic systems. However, to date little is known regarding the ecological effects that might arise following pharmaceutical contamination of aquatic environments.
View Article and Find Full Text PDFParticle and object tracking is gaining attention in industrial applications and is commonly applied in: colloidal, biophysical, ecological, and micro-fluidic research. Reliable tracking information is heavily dependent on the system under study and algorithms that correctly determine particle position between images. However, in a real environmental context with the presence of noise including particular or dissolved matter in water, and low and fluctuating light conditions, many algorithms fail to obtain reliable information.
View Article and Find Full Text PDFPharmaceuticals as environmental contaminants have received a lot of interest over the past decade but, for several pharmaceuticals, relatively little is known about their occurrence in European surface waters. Benzodiazepines, a class of pharmaceuticals with anxiolytic properties, have received interest due to their behavioral modifying effect on exposed biota. In this study, our results show the presence of one or more benzodiazepine(s) in 86% of the analyzed surface water samples (n = 138) from 30 rivers, representing seven larger European catchments.
View Article and Find Full Text PDFAlterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R = 0.
View Article and Find Full Text PDF