Publications by authors named "Klafki H"

Amyloid-β (Aβ) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APP, we demonstrate that OLs and neurons contribute to Aβ plaque burden.

View Article and Find Full Text PDF

Introduction: Blood-based biomarkers are a cost-effective and minimally invasive method for diagnosing the early and preclinical stages of amyloid positivity (AP). Our study aims to investigate our novel immunoprecipitation-immunoassay (IP-IA) as a test for predicting cognitive decline.

Methods: We measured levels of amyloid beta (Aβ)X-40 and AβX-42 in immunoprecipitated eluates from the DELCODE cohort.

View Article and Find Full Text PDF

Aims: The aggregation and deposition of amyloid-β (Aβ) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aβ peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aβ peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aβ4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population.

View Article and Find Full Text PDF

Background: Alpha-synuclein (aSyn) is a key player in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies, or multiple system atrophy. aSyn is expressed throughout the brain, and can also be detected in various peripheral tissues. In fact, initial symptoms of PD are non-motoric and include autonomic dysfunction, suggesting that the periphery might play an important role in early development of the disease.

View Article and Find Full Text PDF

The Aβ42/40 ratio and the concentration of phosphorylated Tau181 in blood plasma represent attractive biomarkers for Alzheimer's disease. As a means for reducing potential matrix effects, which may interfere with plasma immunoassays, we have previously developed a pre-analytical sample workup by semi-automated immunoprecipitation. Here we test the compatibility of pre-analytical immunoprecipitations with automated Aβ1-40, Aβ1-42 and phosphorylated Tau181 immunoassays on the Lumipulse platform and compare the diagnostic performance of the respective immunoprecipitation immunoassay approaches with direct plasma measurements.

View Article and Find Full Text PDF

Senile plaques consisting of amyloid-beta (Aβ) peptides are a major pathological hallmark of Alzheimer's disease (AD). Aβ peptides are heterogeneous regarding the exact length of their amino- and carboxy-termini. Aβ1-40 and Aβ1-42 are often considered to represent canonical "full-length" Aβ species.

View Article and Find Full Text PDF

A variety of factors has been associated with healthy brain aging, and epidemiological studies suggest that physical activity and nutritional supplements such as caffeine may reduce the risk of developing dementia and, in particular, Alzheimer's disease (AD) in later life. Caffeine is known to act as a cognitive enhancer but has been also shown to positively affect exercise performance in endurance activities. We have previously observed that chronic oral caffeine supplementation and a treatment paradigm encompassing physical and cognitive stimulation by enriched environment (EE) housing can improve learning and memory performance and ameliorate hippocampal neuron loss in the Tg4-42 mouse model of AD.

View Article and Find Full Text PDF

Amyloid-β (Aβ) peptides, including post-translationally modified variants thereof, are believed to play a key role in the onset and progression of Alzheimer's disease. Suggested modified Aβ species with potential disease relevance include Aβ peptides phosphorylated at serine in position eight (pSer8-Aβ) or 26 (pSer26-Aβ). However, the published studies on those Aβ peptides essentially relied on antibody-based approaches.

View Article and Find Full Text PDF
Article Synopsis
  • A study identified that the blood plasma ratio of amyloid-β peptides (Aβ) can serve as a biomarker for Alzheimer's disease, showing that the Aβ1-42/Aβ1-40 ratio offers a clearer distinction between amyloid-positive and negative subjects compared to the AβX-42/AβX-40 ratio.
  • The research involved precise measurement techniques and compared median and mean differences between the two groups, revealing a greater decrease in the Aβ1-42/Aβ1-40 ratio in amyloid-positive individuals.
  • These findings suggest that focusing on specific Aβ peptides can enhance the detection of Alzheimer's-related changes in blood, which could improve the understanding and diagnosis of the disease.
View Article and Find Full Text PDF

Background: Measurements of the amyloid-β (Aβ) 42/40 ratio in blood plasma may support the early diagnosis of Alzheimer's disease and aid in the selection of suitable participants in clinical trials. Here, we compared the diagnostic performance of fully automated prototype plasma Aβ42/40 assays with and without pre-analytical sample workup by immunoprecipitation.

Methods: A pre-selected clinical sample comprising 42 subjects with normal and 38 subjects with low cerebrospinal fluid (CSF) Aβ42/40 ratios was studied.

View Article and Find Full Text PDF
Article Synopsis
  • * The study aimed to determine if Aβ-3-40 is present in cerebrospinal fluid (CSF) and how the CSF Aβ-3-40/Aβ42 ratio differentiates between individuals with and without brain amyloid based on PET scans.
  • * Results confirmed Aβ-3-40's presence in CSF; although no significant concentration difference was found between amyloid PET-negative and PET-positive subjects, the Aβ-3-40/Aβ42 ratio was higher in those with amyloid positivity, suggesting its role in Alzheimer's progression.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disorder associated with extracellular amyloid-β peptide deposition and progressive neuron loss. Strong evidence supports that neuroinflammatory changes such as the activation of astrocytes and microglia cells are important in the disease process. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that has recently been associated with an emerging role in neuroinflammation, which has been reported to be increased in post-mortem brain samples from AD and Parkinson's disease patients.

View Article and Find Full Text PDF

Astrocytes may not only be involved in the clearance of Amyloid beta peptides (Aβ) in Alzheimer's disease (AD), but appear to produce N-terminally truncated Aβ (Aβ) independently of BACE1, which generates the N-Terminus of Aβ starting with Asp1 (Aβ). A candidate protease for the generation of Aβ is cathepsin B (CatB), especially since CatB has also been reported to degrade Aβ, which could explain the opposite roles of astrocytes in AD. In this study, we investigated the influence of CatB inhibitors and the deletion of the gene encoding CatB (CTSB) using CRISPR/Cas9 technology on Aβ and Aβ levels in cell culture supernatants by one- and two-dimensional Urea-SDS-PAGE followed by immunoblot.

View Article and Find Full Text PDF

The ratio of amyloid precursor protein (APP) (Aβ)/Aβ in blood plasma was reported to represent a novel Alzheimer's disease biomarker. Here, we describe the characterization of two antibodies against the N-terminus of Aβ and the development and "fit-for-purpose" technical validation of a sandwich immunoassay for the measurement of Aβ. Antibody selectivity was assessed by capillary isoelectric focusing immunoassay, Western blot analysis, and immunohistochemistry.

View Article and Find Full Text PDF

Aims: The deposition of amyloid-β (Aβ) peptides in the form of extracellular plaques in the brain represents one of the classical hallmarks of Alzheimer's disease (AD). In addition to 'full-length' Aβ starting with aspartic acid (Asp-1), considerable amounts of various shorter, N-terminally truncated Aβ peptides have been identified by mass spectrometry in autopsy samples from individuals with AD.

Methods: Selectivity of several antibodies detecting full-length, total or N-terminally truncated Aβ species has been characterized with capillary isoelectric focusing assays using a set of synthetic Aβ peptides comprising different N-termini.

View Article and Find Full Text PDF

In sporadic Alzheimer's disease (AD), an imbalance between production and clearance of amyloid-β (Aβ) peptides seems to account for enhanced Aβ accumulation. The metalloprotease neprilysin (NEP) is an important Aβ degrading enzyme as shown by a variety of in vitro and in vivo studies. While the degradation of full-length Aβ peptides such as Aβ1-40 and Aβ1-42 is well established, it is less clear whether NEP is also capable of degrading N-terminally truncated Aβ species such as the common variant Aβ4-42.

View Article and Find Full Text PDF

Background: The quantification of amyloid-beta (Aβ) peptides in blood plasma as potential biomarkers of Alzheimer's disease (AD) is hampered by very low Aβ concentrations and the presence of matrix components that may interfere with the measurements.

Methods: We developed a two-step immunoassay for the simultaneous measurement of the relative levels of Aβ38, Aβ40 and Aβ42 in human EDTA plasma. The assay was employed for the study of 23 patients with dementia of the Alzheimer's type (AD-D) and 17 patients with dementia due to other reasons (OD).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an irreversible, devastating neurodegenerative brain disorder characterized by the loss of neurons and subsequent cognitive decline. Despite considerable progress in the understanding of the pathophysiology of AD, the precise molecular mechanisms that cause the disease remain elusive. By now, there is ample evidence that activated microglia have a critical role in the initiation and progression of AD.

View Article and Find Full Text PDF

Here we present a water-in-air droplet platform for micro-compartmentalization for single molecule guided synthesis and analysis consisting of a flow-system hosting dense arrays of aqueous microdroplets on a glass surface surrounded by air. The droplets are formed in a few seconds by passing a waterfront over the array of hydrophilic spots surrounded by a hydrophobic coating, thus forming a micro-droplet array (MDA). The droplet volumes are tunable from approximately 50 femtoliter to 20 picoliter by adjusting the size of the hydrophilic spots.

View Article and Find Full Text PDF

Objective: We aimed to determine the effect of human SH2B1 variants on leptin and insulin signaling, major regulators of energy homeostasis, on the RNA level.

Methods: We analyzed the expression of infrequent alleles of seven SH2B1 variants (Arg67Cys, Lys150Arg, Thr175Ala, Thr343Met, Thr484Ala, Ser616Pro and Pro689Leu) in response to insulin or leptin cell stimulation. Two of these were identified in own mutation screens, the others were predicted to be deleterious or to serve as controls.

View Article and Find Full Text PDF

The technical performance of immunological assays and their suitability for the intended use should be carefully validated before implementation in research, clinical studies or routine. We describe here the evaluation of a sandwich electrochemiluminescence immunoassay for measuring total Amyloid-β levels in human blood plasma as an example of a laboratory protocol for a partial "fit for purpose" assay performance validation. We tested two different assay protocols and addressed impact of sample dilution, parallelism, intra- and inter-assay variance, lower limit of quantification, lower limit of detection, and analytical spike recoveries.

View Article and Find Full Text PDF

Analysis of cerebrospinal fluid (CSF) is one of the key tools for the state-of-the-art differential diagnosis of dementias. Dementia due to Alzheimer's disease (AD) is characterized by elevated CSF levels of total Tau (tTau) and phospho-181-Tau (pTau) and low CSF amyloid-β42 (Aβ42). Discrepancies in the laboratory analysis of human materials are well known and much effort has been put into harmonization procedures.

View Article and Find Full Text PDF

Background: The deposition of neurotoxic amyloid-β (Aβ) peptides in plaques in the brain parenchyma and in cerebral blood vessels is considered to be a key event in Alzheimer's disease (AD) pathogenesis. Although the presence and impact of full-length Aβ peptides such as Aβ and Aβ have been analyzed extensively, the deposition of N-terminally truncated Aβ peptide species has received much less attention, largely because of the lack of specific antibodies.

Methods: This paper describes the generation and characterization of novel antibodies selective for Aβ peptides and provides immunohistochemical evidence of Aβ in the human brain and its distribution in the APP/PS1KI and 5XFAD transgenic mouse models.

View Article and Find Full Text PDF

Decreased β-amyloid (Aβ) clearance from the brain has been suggested to contribute to cerebral Aβ accumulation in Alzheimer's disease. Based on the idea of a dynamic Aβ equilibrium in different body compartments, plasma Aβ levels have been investigated as biomarker candidates for preclinical Alzheimer's pathology, yet with inconsistent results. Since the kidneys are involved in Aβ elimination from the blood, we evaluated how chronic kidney disease (CKD) affects the association between plasma Aβ and cognitive deficits and cognitive decline.

View Article and Find Full Text PDF