Publications by authors named "Kladko D"

Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design.

View Article and Find Full Text PDF

Magnetic nanoparticles are a prospective class of materials for use in biomedicine as agents for magnetic resonance imagining (MRI) and hyperthermia treatment. However, synthesis of nanoparticles with high efficacy is resource-intensive experimental work. In turn, the use of machine learning (ML) methods is becoming useful in materials design and serves as a great approach to designing nanomagnets for biomedicine.

View Article and Find Full Text PDF

Bacterial biofilms play a major etiological role in dental diseases worldwide. Currently, toothpastes with bactericidal chemicals and abrasive materials are used as preventive care methods. However, chemicals can cause adverse side effects, with the use of antibiotics, fluorides, and antiseptics drastically reducing quality of life.

View Article and Find Full Text PDF

Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches.

View Article and Find Full Text PDF

Thrombosis-related diseases are undoubtedly the deadliest disorders. During the last decades, numerous attempts were made to reduce the overall death rate and severe complications caused by treatment delays. Significant progress has been made in the development of nanostructured thrombolytics, especially magnetically controlled.

View Article and Find Full Text PDF

Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity.

View Article and Find Full Text PDF

Atherosclerosis, being an inflammation-associated disease, represents a considerable healthcare problem. Its origin remains poorly understood, and at the same time, it is associated with extensive morbidity and mortality worldwide due to myocardial infarctions and strokes. Unfortunately, drugs are unable to effectively prevent plaque formation.

View Article and Find Full Text PDF

For decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range.

View Article and Find Full Text PDF