Publications by authors named "Klaas Mulder"

The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established.

View Article and Find Full Text PDF

To further our understanding of how biochemical information flows through cells upon external stimulation, we require single-cell multi-omics methods that concurrently map changes in (phospho)protein levels across signaling networks and the associated gene expression profiles. Here, we present quantification of RNA and intracellular epitopes by sequencing (QuRIE-seq), a droplet-based platform for single-cell RNA and intra- and extracellular (phospho)protein quantification through sequencing. We applied QuRIE-seq to quantify cell-state changes at both the signaling and the transcriptome level after 2-, 4-, 6-, 60-, and 180-min stimulation of the B cell receptor pathway in Burkitt lymphoma cells.

View Article and Find Full Text PDF

Dengue virus (DENV) constitutes one of the most important arboviral pathogens affecting humans. The high prevalence of DENV infections, which cause more than 20,000 deaths annually, and the lack of effective vaccines or direct-acting antiviral drugs make it a global health concern. DENV genome replication occurs in close association with the host endomembrane system, which is remodeled to form the viral replication organelle that originates from endoplasmic reticulum (ER) membranes.

View Article and Find Full Text PDF

Dengue virus (DENV) and Zika virus (ZIKV), members of the Flavivirus genus, rearrange endoplasmic reticulum membranes to induce invaginations known as vesicle packets (VPs), which are the assumed sites for viral RNA replication. Mechanistic information on VP biogenesis has so far been difficult to attain due to the necessity of studying their formation under conditions of viral replication, where perturbations reducing replication will inevitably impact VP formation. Here, we report a replication-independent expression system, designated pIRO (plasmid-induced replication organelle formation) that induces bona fide DENV and ZIKV VPs that are morphologically indistinguishable from those in infected cells.

View Article and Find Full Text PDF

Reprogramming somatic cells to induced pluripotent stem cells (iPSC) succeeds only in a small fraction of cells within the population. Reprogramming occurs in distinctive stages, each facing its own bottlenecks. It initiates with overexpression of transcription factors OCT4, SOX2, KLF4 and c-MYC (OSKM) in somatic cells such as mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

Regenerative responses predispose tissues to tumor formation by largely unknown mechanisms. High-mobility group box 1 (HMGB1) is a danger-associated molecular pattern contributing to inflammatory pathologies. We show that HMGB1 derived from keratinocytes, but not myeloid cells, delays cutaneous wound healing and drives tumor formation.

View Article and Find Full Text PDF

Reprogramming to induced pluripotency through expression of OCT4, SOX2, KLF4, MYC (OSKM) factors is often considered the dedifferentiation of somatic cells. This would suggest that reprogramming represents the reversal of embryonic differentiation. Indeed, molecular events involving the activity of the pluripotency network occur in opposite directions.

View Article and Find Full Text PDF

Differentiated cells are epigenetically stable, but can be reprogrammed to pluripotency by expression of the OSKM transcription factors. Despite significant effort, relatively little is known about the cellular requirements for reprogramming and how they affect the properties of induced pluripotent stem cells. We have performed high-content screening with small interfering RNAs targeting 300 chromatin-associated factors and extracted colony-level quantitative features.

View Article and Find Full Text PDF

Environmental stimuli often lead to heterogeneous cellular responses and transcriptional output. We developed single-cell RNA and Immunodetection (RAID) to allow combined analysis of the transcriptome and intracellular (phospho-)proteins from fixed single cells. RAID successfully recapitulated differentiation-state changes at the protein and mRNA level in human keratinocytes.

View Article and Find Full Text PDF

As our understanding of transcriptional regulation improves so does our appreciation of its complexity. Both coding and (long) non-coding RNAs provide cells with multiple levels of control and thereby flexibility to adapt gene expression to the environment. However, few long non-coding RNAs (lncRNAs) have been studied in human epidermal stem cells.

View Article and Find Full Text PDF

Transcription factor p63 is a key regulator of epidermal keratinocyte proliferation and differentiation. Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. However, the underlying molecular mechanism of these mutations remains unclear.

View Article and Find Full Text PDF

Epidermal homeostasis requires balanced and coordinated adult stem cell renewal and differentiation. These processes are controlled by both extracellular signaling and by cell intrinsic transcription regulatory networks, yet how these control mechanisms are integrated to achieve this is unclear. Here, we developed single-cell Immuno-Detection by sequencing (scID-seq) and simultaneously measured 69 proteins (including 34 phosphorylated epitopes) at single-cell resolution to study the activation state of signaling pathways during human epidermal differentiation.

View Article and Find Full Text PDF

Epidermal homeostasis requires balanced progenitor cell proliferation and loss of differentiated cells from the epidermal surface. During this process, cells undergo major changes in their transcriptional programs to accommodate new cellular functions. We found that transcriptional and post-transcriptional mechanisms underlying these changes jointly control genes involved in cell adhesion, a key process in epidermal maintenance.

View Article and Find Full Text PDF

Cell-based small molecule screening is an effective strategy leading to new medicines. Scientists in the pharmaceutical industry as well as in academia have made tremendous progress in developing both large-scale and smaller-scale screening assays. However, an accessible and universal technology for measuring large numbers of molecular and cellular phenotypes in many samples in parallel is not available.

View Article and Find Full Text PDF

Cells are complex systems in which dynamic gene expression and protein-interaction networks adapt to changes in the environment. Seeding and subsequent spreading of cells on substrates represents an example of adaptation to a major perturbation. The formation of adhesive interactions and self-organisation of the cytoskeleton during initial spreading might prime future cell behaviour.

View Article and Find Full Text PDF

In this study, we originally aimed to characterize the potential role of Argonaute 2 (AGO2) in the nucleus, a key protein of the miRNA machinery. We combined Chromatin Immunoprecipitation (ChIP) with high throughput sequencing (ChIP-seq) and quantitative mass spectrometry (ChIP-MS) using the broadly used AGO2 11A9 antibody to determine interactions with chromatin and nuclear proteins. We found a previously described interaction between AGO2 and SWI/SNF on chromatin with ChIP-MS and observed enrichment at enhancers and transcription start sites using ChIP-seq.

View Article and Find Full Text PDF

The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6 cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue.

View Article and Find Full Text PDF

Immuno-PCR combines specific antibody-based protein detection with the sensitivity of PCR-based quantification through the use of antibody-DNA conjugates. The production of such conjugates depends on the availability of quick and efficient conjugation strategies for the two biomolecules. Here, we present an approach to produce cleavable antibody-DNA conjugates, employing the fast kinetics of the inverse electron-demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO).

View Article and Find Full Text PDF

Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants.

View Article and Find Full Text PDF

Dengue virus (DENV) is an important human pathogen, especially in the tropical and subtropical parts of the world, causing considerable morbidity and mortality. DENV replication occurs in the cytoplasm; however, a high proportion of nonstructural protein 5 (NS5), containing methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities, accumulates in the nuclei of infected cells. The present study investigates the impact of nuclear localization of NS5 on its known functions, including viral RNA replication and subversion of the type I interferon response.

View Article and Find Full Text PDF

Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the 'search space' for important genetic interactions.

View Article and Find Full Text PDF

It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation.

View Article and Find Full Text PDF

New therapeutic strategies are needed to improve treatment of head and neck squamous cell carcinoma (HNSCC), an aggressive tumor with poor survival rates. FRMD4A is a human epidermal stem cell marker implicated previously in epithelial polarity that is upregulated in SCC cells. Here, we report that FRMD4A upregulation occurs in primary human HNSCCs where high expression levels correlate with increased risks of relapse.

View Article and Find Full Text PDF

Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells.

View Article and Find Full Text PDF

Background: The evolutionarily conserved Ccr4-Not and Bur1/2 kinase complexes are functionally related in Saccharomyces cerevisiae. In this study, we further explore the relationship between the subunits Not4p and Bur2p.

Methodology/principal Findings: First, we investigated the presence of post-translational modifications on the Ccr4-Not complex.

View Article and Find Full Text PDF