Publications by authors named "Klaas Jan Wijk"

The thylakoid proteome of chloroplasts contains multiple proteins involved in antioxidative defense, protein folding, and repair. To understand this functional protein network, we analyzed the quantitative response of the thylakoid-associated proteome of Arabidopsis (Arabidopsis thaliana) wild type and the ascorbate-deficient mutant vtc2-2 after transition to high light (HL; 1,000 micromol photons m(-2) s(-1)). The soluble thylakoid proteomes of wild type and vtc2-2 were compared after 0, 1, 3, and 5 d of HL using two-dimensional gels with three independent experiments, followed by a multivariant statistical analysis and tandem mass spectrometry.

View Article and Find Full Text PDF

To improve understanding and identify novel substrates of the cytoplasmic chaperone SecB in Escherichia coli, we analyzed a secB null mutant using comparative proteomics. The secB null mutation did not affect cell growth but caused significant differences at the proteome level. In the absence of SecB, dynamic protein aggregates containing predominantly secretory proteins accumulated in the cytoplasm.

View Article and Find Full Text PDF

The composition of the chloroplast-localized protease complex, ClpP, from the green alga Chlamydomonas reinhardtii was characterized by nondenaturing electrophoresis, immunoblotting and MS. The detected ClpP complex has a native mass of approximately 540 kDa, which is approximately 200 kDa higher than ClpP complexes in higher plant chloroplasts, mitochondria or bacteria. The 540-kDa ClpP complex contains two nuclear-encoded ClpP proteins (ClpP3 and P5) and five ClpR (R1, R2, R3, R4 and R6) proteins, as well two proteins, ClpP1L and ClpP1H, both probably derived from the plastid clpP1 gene.

View Article and Find Full Text PDF

We describe a generic, GFP-based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane-integral flavocytochrome.

View Article and Find Full Text PDF

We affinity-purified the tobacco plastid-encoded plastid RNA polymerase (PEP) complex by the alpha subunit containing a C-terminal 12 x histidine tag using heparin and Ni(2+) chromatography. The composition of the complex was determined by mass spectrometry after separating the proteins of the >900 kDa complex in blue native and SDS polyacrylamide gels. The purified PEP contained the core alpha, beta, beta', beta" subunits and five major associated proteins of unknown function, but lacked sigma factors required for promoter recognition.

View Article and Find Full Text PDF

The signal recognition particle (SRP) in bacteria and endoplasmic reticulum is involved in co-translational targeting. Plastids contain cpSRP54 and cpSRP43, unique to plants, but lack a SRP RNA molecule. A role for cpSRP in biogenesis of plastid-encoded membrane proteins has not been firmly established yet.

View Article and Find Full Text PDF

A new component of the bacterial translocation machinery, YidC, has been identified that specializes in the integration of membrane proteins. YidC is homologous to the mitochondrial Oxa1p and the chloroplast Alb3, which functions in a novel pathway for the insertion of membrane proteins from the mitochondrial matrix and chloroplast stroma, respectively. We find that Alb3 can functionally complement the Escherichia coli YidC depletion strain and promote the membrane insertion of the M13 procoat and leader peptidase that were previously shown to depend on the bacterial YidC for membrane translocation.

View Article and Find Full Text PDF