Au nanostructures (Au NSs) have been considered promising materials for applications in fuel cell catalysis, electrochemistry, and plasmonics. For the fabrication of high-performance Au NS-based electronic or electrochemical devices, Au NSs should have clean surfaces and be directly supported on a substrate without any mediating molecules. Herein, we report the vapor-phase synthesis of Au NSs on a fluorine-doped tin oxide (FTO) substrate at 120 °C and their application to the electrocatalytic methanol oxidation reaction (MOR).
View Article and Find Full Text PDFTransgenic pigs are quite useful in many biomedical fields, such as xenotransplantation research and the production of biopharmaceutical materials. The genetic transformation of porcine spermatogonial stem cells (pSSCs) followed by differentiation into mature spermatozoa enables the effective production of transgenic pigs. Improving the transfection efficiency of pSSCs, however, has been much desired.
View Article and Find Full Text PDFIn this data article, we developed a Au nanowire injector (Au NWI) for directly delivering plasmid into the 1-cell stage of the mouse embryos designed to successfully attach and detach the plasmid on the Au NWI, highly minimizing physical and chemical damage on the embryos. This data presents that a Au NWI system does not induce detrimental damages on development of embryos and efficiently express the green fluorescence protein in vitro. The data provided herein is in association with the research article related to reduce the occurrence of mosaicism by a Au NWI," Suppressing Mosaicism by Au Nanowire Injector-driven Direct Delivery of Plasmids into Mouse Embryos" (Park et al.
View Article and Find Full Text PDFTransgenic animals have become key tools in a variety of biomedical research areas. However, microinjection commonly used for producing transgenic animals has several challenges such as physical and chemical damage to the embryos due to microinjector with buffer, and low transgene integration rates with frequent mosaicism. Here, we report direct delivery of plasmids into mouse embryos using a Au nanowire injector (NWI) that significantly improved transgene integration efficiency and suppressed mosaicism.
View Article and Find Full Text PDF