Publications by authors named "Kjong Van Lehmann"

Article Synopsis
  • Homologous recombination deficiency (HRD) is a key biomarker for predicting which cancer patients might respond to PARP inhibitors, but testing for HRD is complex.* -
  • The researchers created a deep learning pipeline using attention-weighted multiple instance learning (attMIL) to predict HRD status from routine histology images, achieving varying accuracy rates across different cancer types.* -
  • Results showed that HRD can be predicted directly from histology slides for multiple cancers, with the model demonstrating promising accuracy, particularly for endometrial, pancreatic, and lung cancers.*
View Article and Find Full Text PDF
Article Synopsis
  • Whole Exome Sequencing (WES) is a powerful tool in cancer diagnostics that allows for comprehensive analysis of genes, improving the detection of complex biomarkers compared to traditional panel-based methods.
  • A study analyzing tissue specimens across 21 NGS centers showed that, although there was a 76% agreement in somatic variant calling, refining filtering criteria improved this to 88%, highlighting the importance of filter settings in variant detection.
  • The reliability of detecting specific genomic changes (like CNAs and complex biomarkers) varied among labs, emphasizing the need for improved bioinformatics processes and collaborative testing to minimize discrepancies in future analyses.
View Article and Find Full Text PDF

Motivation: Multimodal profiling strategies promise to produce more informative insights into biomedical cohorts via the integration of the information each modality contributes. To perform this integration, however, the development of novel analytical strategies is needed. Multimodal profiling strategies often come at the expense of lower sample numbers, which can challenge methods to uncover shared signals across a cohort.

View Article and Find Full Text PDF

It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing in hematopoietic progenitors of wild-type (WT), Csnk1a1-/+, Egr1-/+, Csnk1a1/Egr1-/+ mice.

View Article and Find Full Text PDF

The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1 on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1 alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53.

View Article and Find Full Text PDF

Understanding and predicting molecular responses in single cells upon chemical, genetic or mechanical perturbations is a core question in biology. Obtaining single-cell measurements typically requires the cells to be destroyed. This makes learning heterogeneous perturbation responses challenging as we only observe unpaired distributions of perturbed or non-perturbed cells.

View Article and Find Full Text PDF

Background: Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types.

View Article and Find Full Text PDF

Mutations in the splicing factor SF3B1 are frequently occurring in various cancers and drive tumor progression through the activation of cryptic splice sites in multiple genes. Recent studies also demonstrate a positive correlation between the expression levels of wild-type SF3B1 and tumor malignancy. Here, we demonstrate that SF3B1 is a hypoxia-inducible factor (HIF)-1 target gene that positively regulates HIF1 pathway activity.

View Article and Find Full Text PDF

Motivation: Several recently developed single-cell DNA sequencing technologies enable whole-genome sequencing of thousands of cells. However, the ultra-low coverage of the sequenced data (<0.05× per cell) mostly limits their usage to the identification of copy number alterations in multi-megabase segments.

View Article and Find Full Text PDF

With the constant increase of large-scale genomic data projects, automated and high-throughput quality assessment becomes a crucial component of any analysis. Whereas small projects often have a more homogeneous design and a manageable structure allowing for a manual per-sample analysis of quality, large-scale studies tend to be much more heterogeneous and complex. Many quality metrics have been developed to assess the quality of an individual sample on the raw read level.

View Article and Find Full Text PDF

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.

View Article and Find Full Text PDF

Motivation: Recent technological advances have led to an increase in the production and availability of single-cell data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or clinically meaningful observations through the unification of the perspectives afforded by each technology. In most cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets are lost.

View Article and Find Full Text PDF

Motivation: Understanding the underlying mutational processes of cancer patients has been a long-standing goal in the community and promises to provide new insights that could improve cancer diagnoses and treatments. Mutational signatures are summaries of the mutational processes, and improving the derivation of mutational signatures can yield new discoveries previously obscured by technical and biological confounders. Results from existing mutational signature extraction methods depend on the size of available patient cohort and solely focus on the analysis of mutation count data without considering the exploitation of metadata.

View Article and Find Full Text PDF

Transcript alterations often result from somatic changes in cancer genomes. Various forms of RNA alterations have been described in cancer, including overexpression, altered splicing and gene fusions; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

The discovery of drivers of cancer has traditionally focused on protein-coding genes. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods.

View Article and Find Full Text PDF

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription.

View Article and Find Full Text PDF

Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing events than normal samples. Association analysis of somatic variants with alternative splicing events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified additional trans-acting variants (e.

View Article and Find Full Text PDF

Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study.

View Article and Find Full Text PDF

Background: Variation within splicing regulatory sequences often leads to differences in gene models among individuals within a species. Two alleles of the same gene may express transcripts with different exon/intron structures and consequently produce functionally different proteins. Matching genomic and transcriptomic data allows us to identify putative regulatory variants associated with changes in splicing patterns.

View Article and Find Full Text PDF

We present a genome-wide analysis of splicing patterns of 282 kidney renal clear cell carcinoma patients in which we integrate data from whole-exome sequencing of tumor and normal samples, RNA-seq and copy number variation. We proposed a scoring mechanism to compare splicing patterns in tumor samples to normal samples in order to rank and detect tumor-specific isoforms that have a potential for new biomarkers. We identified a subset of genes that show introns only observable in tumor but not in normal samples, ENCODE and GEUVADIS samples.

View Article and Find Full Text PDF

The thousand genomes project and many similar ongoing large-scale sequencing efforts require new methods to predict functional variants in both coding and non-coding regions in order to understand phenotype and genotype relationships. We report the design of a new model SInBaD (Sequence-Information-Based-Decision-model) which relies on nucleotide conservation information to evaluate any annotated human variant in all known exons, introns, splice junctions and promoter regions. SInBaD builds separate mathematical models for promoters, exons and introns, using the human disease mutations annotated in human gene mutation database as the training dataset for functional variants.

View Article and Find Full Text PDF