Publications by authors named "Kjer K"

Article Synopsis
  • Hymenoptera, which includes sawflies, wasps, ants, and bees, is a highly diverse group of insects with over 153,000 known species and potentially many more, playing crucial roles in ecosystems and economies as predators, parasitoids, and pollinators.
  • A study analyzing thousands of protein-coding genes in various insect species traced the evolutionary history of Hymenoptera, revealing that they began diversifying roughly 281 million years ago and identifying key lineages, including parasitoid wasps and the ancestral roots of bees.
  • The research suggests that the diversity of sawflies arose from a significant evolutionary shift among phytophagous Hymenoptera, and all parasitoid wasps are linked to a
View Article and Find Full Text PDF

The size of molecular datasets has been growing exponentially since the mid 1980s, and new technologies have now dramatically increased the slope of this increase. New datasets include genomes, transcriptomes, and hybrid capture data, producing hundreds or thousands of loci. With these datasets, we are approaching a consensus on the higher level insect phylogeny.

View Article and Find Full Text PDF

The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies.

View Article and Find Full Text PDF

DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species.

View Article and Find Full Text PDF

Biodiversity analyses based on next-generation sequencing (NGS) platforms have developed by leaps and bounds in recent years. A PCR-free strategy, which can alleviate taxonomic bias, was considered as a promising approach to delivering reliable species compositions of targeted environments. The major impediment of such a method is the lack of appropriate mitochondrial DNA enrichment ways.

View Article and Find Full Text PDF

Tong et al. comment on the accuracy of the dating analysis presented in our work on the phylogeny of insects and provide a reanalysis of our data. They replace log-normal priors with uniform priors and add a "roachoid" fossil as a calibration point.

View Article and Find Full Text PDF

Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips.

View Article and Find Full Text PDF

Background: Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM).

View Article and Find Full Text PDF

Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence.

View Article and Find Full Text PDF

Background: Failure to account for covariation patterns in helical regions of ribosomal RNA (rRNA) genes has the potential to misdirect the estimation of the phylogenetic signal of the data. Furthermore, the extremes of length variation among taxa, combined with regional substitution rate variation can mislead the alignment of rRNA sequences and thus distort subsequent tree reconstructions. However, recent developments in phylogenetic methodology now allow a comprehensive integration of secondary structures in alignment and tree reconstruction analyses based on rRNA sequences, which has been shown to correct some of these problems.

View Article and Find Full Text PDF

Figs and fig-pollinating wasps are obligate mutualists that have coevolved for over 60 million years. But when and where did pollinating fig wasps (Agaonidae) originate? Some studies suggest that agaonids arose in the Late Cretaceous and the current distribution of fig-wasp faunas can be explained by the break-up of the Gondwanan landmass. However, recent molecular-dating studies suggest divergence time estimates that are inconsistent with the Gondwanan vicariance hypothesis and imply that long distance oceanic dispersal could have been an important process for explaining the current distribution of both figs and fig wasps.

View Article and Find Full Text PDF

Trophophoresy is exhibited in two ant genera: Acropyga (Formicinae), in which all 37 species are thought to be trophophoretic, and Tetraponera (Pseudomyrmecinae), in which it has been observed in only one species, T. binghami. This study analyses a dataset comprised of both morphological and molecular (D2 region of 28S rRNA and EF1-alpha) data.

View Article and Find Full Text PDF

Phylogenies of major groups of insects based on both morphological and molecular data have sometimes been contentious, often lacking the data to distinguish between alternative views of relationships. This paucity of data is often due to real biological and historical causes, such as shortness of time spans between divergences for evolution to occur and long time spans after divergences for subsequent evolutionary changes to obscure the earlier ones. Another reason for difficulty in resolving some of the relationships using molecular data is the limited spectrum of genes so far developed for phylogeny estimation.

View Article and Find Full Text PDF

Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P.

View Article and Find Full Text PDF

Whether phylogenetic data should be differentially or equally weighted is currently debated. Further, if differential weighting is to be explored, there is no consensus among investigators as to which weighting scheme is most appropriate. Mitochondrial genome data offer a powerful tool in assessment of differential weighting schemes because taxa can be selected from which a highly corroborated phylogeny is available (so that accuracy can be assessed), and it can be assumed that different data partitions share the same history (so that gene-sorting issues are not so problematic).

View Article and Find Full Text PDF

Background: Traditionally, most studies employing data from whole mitochondrial genomes to diagnose relationships among the major lineages of mammals have attempted to exclude regions that potentially complicate phylogenetic analysis. Components generally excluded are 3rd codon positions of protein-encoding genes, the control region, rRNAs, tRNAs, and the ND6 gene (encoded on the opposite strand). We present an approach that includes all the data, with the exception of the control region.

View Article and Find Full Text PDF

The nuclear small subunit rRNA (18S) has played a dominant role in the estimation of relationships among insect orders from molecular data. In previous studies, 18S sequences have been aligned by unadjusted automated approaches (computer alignments that are not manually readjusted), most recently with direct optimization (simultaneous alignment and tree building using a program called "POY"). Parsimony has been the principal optimality criterion.

View Article and Find Full Text PDF

Tribe Ustilaginoideae (Hypocreales, Ascomycetes) is made up of three anamorph genera, Munkia, Neomunkia and Ustilaginoidea. Species of Munkia and Neomunkia develop on the culms of bamboo (Chusquea spp.) and have a neotropical distribution while species of Ustilaginoidea infect the florets of various grasses and are pantropical in distribution.

View Article and Find Full Text PDF

The leaf beetle genus Trirhabda contains 26 described species from the United States and Canada, feeding on host plants from the families Asteraceae and Hydrophyllaceae. In this study, we present a phylogeny for the genus that was reconstructed from mitochondrial COI and 12S rRNA fragments, nuclear ITS2 rRNA, and morphological characters. Both parsimony and mixed-model Bayesian likelihood analyses were performed.

View Article and Find Full Text PDF

Historically, chemical ecologists assumed that cucurbitacin feeding and sequestration in rootworm leaf beetles is a remnant of an ancient association between the Luperini (Coleoptera: Chrysomelidae; Galerucinae) and Cucurbitaceae (ancestral host hypothesis). Under this premise, rootworms that do not develop on cucurbits but undergo pharmacophagous forays for cucurbitacins are thought to do so to supplement novel host diets that lack these bitter compounds. The ancestral host hypothesis is supported from studies of pyrrolizidine alkaloid pharmacophagy in Lepidoptera but has not been subjected to phylogenetic analysis within the Luperini.

View Article and Find Full Text PDF

Previous studies using the nuclear SSU rDNA have indicated that the photosynthetic euglenoids are a monophyletic group; however, some of the genera within the photosynthetic lineage are not monophyletic. To test these results further, evolutionary relationships among the photosynthetic genera were investigated by obtaining partial LSU nuclear rDNA sequences. Taxa from each of the external clades of the SSU rDNA-based phylogeny were chosen to create a combined dataset and to compare the individual LSU and SSU rDNA datasets.

View Article and Find Full Text PDF