Publications by authors named "Kjellander R"

The Poisson-Boltzmann and Debye-Hückel approximations for the pair distributions and mean electrostatic potential in electrolytes predict that these entities have one single decay mode with a decay length equal to the Debye length 1/κD, that is, they have a characteristic contribution that decays with distance r like e-κDr/r. However, in reality, electrolytes have several decay modes e-κr/r, e-κ'r/r etc. with different decay lengths, 1/κ, 1/κ' etc.

View Article and Find Full Text PDF

A general, exact theory for the decay of interactions between any particles immersed in electrolytes, including surface forces between macroscopic bodies, is derived in a self-contained, physically transparent manner. It is valid for electrolytes at any density, including ionic gases, molten salts, ionic liquids, and electrolyte solutions with molecular solvent at any concentration. The ions, the solvent and any other particles in the system can have any sizes, any shapes and arbitrary internal charge distributions.

View Article and Find Full Text PDF

A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length.

View Article and Find Full Text PDF

Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions).

View Article and Find Full Text PDF

Screened electrostatic surface forces, also called double layer forces, between surfaces in ionic liquids can, depending on the circumstances, decay in an exponentially damped, oscillatory manner or in a plain exponential way (the latter as in dilute electrolyte solutions where ion-ion correlations are very weak). The occurrence of both of these behaviors in dense ionic liquids, where ion-ion correlations are very strong, is analyzed in the current work using exact statistical mechanics formulated in a manner that is physically transparent. A vital ingredient in understanding the decay behaviors is the fact that electrostatics in dense electrolytes have a non-local nature caused by the strong correlations.

View Article and Find Full Text PDF

Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations.

View Article and Find Full Text PDF

Pair distributions of fluids confined between two surfaces at close distance are of fundamental importance for a variety of physical, chemical, and biological phenomena, such as interactions between macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Motivated by recent experimental advances in determining anisotropic structure factors of confined fluids, we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inhomogeneous fluids.

View Article and Find Full Text PDF

We address the fundamental question: how are pair correlations and structure factors of hard-sphere fluids affected by confinement between hard planar walls at close distance? For this purpose, we combine x-ray scattering from colloid-filled nanofluidic channel arrays and first-principles inhomogeneous liquid-state theory within the anisotropic Percus-Yevick approximation. The experimental and theoretical data are in remarkable agreement at the pair-correlation level, providing the first quantitative experimental verification of the theoretically predicted confinement-induced anisotropy of the pair-correlation functions for the fluid. The description of confined fluids at this level provides, in the general case, important insights into the mechanisms of particle-particle interactions in dense fluids under confinement.

View Article and Find Full Text PDF

Many-body correlations in electrolyte systems are important when the electrostatic coupling and/or the volume fraction of ions are not low. Such correlations are ignored in the traditional theories of electrolytes based on the Poisson-Boltzmann approximation. In the general case, the ion density profiles (ion-surface correlation functions) and the ion-ion correlation functions in diffuse electric double layers are strongly interdependent.

View Article and Find Full Text PDF

The interaction pressure between two uncharged planar walls immersed in various electrolyte solutions containing mono- and/or divalent ions is investigated. The solution is treated as a primitive model electrolyte, and the wall surfaces constitute dielectric discontinuities. Ionic image charge and ion-wall dispersion interactions are included.

View Article and Find Full Text PDF

The interaction pressure between two planar charged walls is calculated for a range of conditions. The diffuse electric double layers between the two wall surfaces are treated with ion-wall dispersion forces and ionic image charge interactions taken into account. Both these interactions are due to dielectric discontinuities at the surfaces.

View Article and Find Full Text PDF

The solubility of drugs in water is investigated in a series of papers. In this work, we address the process of bringing a drug molecule from the vapor into a pure drug amorphous phase. This step enables us to actually calculate the solubility of amorphous drugs in water.

View Article and Find Full Text PDF

The solubility of drugs in water is investigated in a series of papers and in the current work. The free energy of solvation, DeltaG*(vl), of a drug molecule in its pure drug melt at 673.15 K (400 degrees C) has been obtained for 46 drug molecules using the free energy perturbation method.

View Article and Find Full Text PDF

As a first step in the computational prediction of drug solubility the free energy of hydration, DeltaG*(vw) in TIP4P water has been computed for a data set of 48 drug molecules using the free energy of perturbation method and the optimized potential for liquid simulations all-atom force field. The simulations were performed in two steps, where first the Coulomb and then the Lennard-Jones interactions between the solute and the water molecules were scaled down from full to zero strength to provide physical understanding and simpler predictive models. The results have been interpreted using a theory assuming DeltaG*(vw) = A(MS)gamma + E(LJ) + E(C)/2 where A(MS) is the molecular surface area, gamma is the water-vapor surface tension, and E(LJ) and E(C) are the solute-water Lennard-Jones and Coulomb interaction energies, respectively.

View Article and Find Full Text PDF

Two effects of interactions between polarizable ions and polarizable walls in electric double layers are investigated: ionic image charge forces and ion-wall dispersion forces. The first must be included for a consistent treatment of the wall-wall van der Waals (vdW) interaction, since it contains the effect of screening of the static part of the vdW interaction. The second has been suggested to give rise to ion specificity in double layer interactions.

View Article and Find Full Text PDF

In this paper we derive the multipolar expansion of the screened Coulomb potential in electrolyte solutions with molecular solvent. The solute and solvent molecules can have arbitrary sizes, shapes, and internal charge distributions. We use the exact statistical mechanical definition of renormalized charge distributions coming from "dressed molecule theory" to determine the effective multipoles of a molecule immersed in an electrolyte.

View Article and Find Full Text PDF

A scheme is suggested of how to construct good bias potentials ("balancing factors") to be used in expanded ensemble (EE) calculations of chemical potentials of solutions. A combination of two strategies are used: (i) to use a pathway for particle insertions that avoids large variations in free energy and (ii) to use calculated free energy derivatives to construct a bias potential that makes the pathway fairly level. Only a few very short simulations are needed to accomplish the latter, and then, a full EE simulation is done to obtain the chemical potential.

View Article and Find Full Text PDF

The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution.

View Article and Find Full Text PDF