Arctic plants are adapted to climatic variability, but their long-term responses to warming remain unclear. Responses may occur by range shifts, phenological adjustments in growth and reproduction, or both. Here, we compare distribution and phenology of 83 arctic and boreal mountain species, sampled identically in the early 20th (1917-1919) and 21st centuries (2017-2018) from a region of northern Sweden that has warmed significantly.
View Article and Find Full Text PDFTemperature sums are widely used to predict the seasonal timing of yearly recurring biological events, such as flowering, budburst, and hatching. We use a classic energy allocation model for annual plants to compare a strategy for reproductive timing that follows a temperature sum rule (TSR) with a strategy that follows an optimal control rule (OCR) maximizing reproductive output. We show that the OCR corresponds to a certain TSR regardless of how temperature is distributed over the growing season as long as the total temperature sum over the whole growing season is constant between years.
View Article and Find Full Text PDFPlant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing.
View Article and Find Full Text PDFPremise Of The Study: Herbarium specimens provide a robust record of historical plant phenology (the timing of seasonal events such as flowering or fruiting). However, the difficulty of aggregating phenological data from specimens arises from a lack of standardized scoring methods and definitions for phenological states across the collections community.
Methods And Results: To address this problem, we report on a consensus reached by an iDigBio working group of curators, researchers, and data standards experts regarding an efficient scoring protocol and a data-sharing protocol for reproductive traits available from herbarium specimens of seed plants.
Phenological responses to climate change (e.g., earlier leaf-out or egg hatch date) are now well documented and clearly linked to rising temperatures in recent decades.
View Article and Find Full Text PDFThe Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data.
View Article and Find Full Text PDFPhenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition.
View Article and Find Full Text PDFMany migratory bird species have advanced their spring arrival during the latest decades, most probably due to climate change. However, studies on migratory phenology in the period before recent global warming are scarce. We have analyzed a historical dataset (1873-1917) of spring arrival to southern and central Sweden of 14 migratory bird species.
View Article and Find Full Text PDFPremise Of The Study: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied.
View Article and Find Full Text PDFClimate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m).
View Article and Find Full Text PDFLong-term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness-maximizing flowering time, defined as the switching time from vegetative to reproductive growth.
View Article and Find Full Text PDFBiotic pollination is thought to correlate with increased interspecific competition for pollination among plants and a higher speciation rate. In this study we compared patterns of flowering phenology and species richness between abiotically (wind) and biotically pollinated plants, using phylogenetically independent contrasts. We compiled phenological data from eight local seasonal floras, in which we found geographically overlapping sister clades.
View Article and Find Full Text PDF