Integrated optical modulators (IOMs) are crucial components of on-chip photonic circuits. However, most conventional IOMs are restricted to specific spectral bands. Here, we leveraged the wide transparency window of lithium niobate in conjunction with the two-pulley coupled resonator method.
View Article and Find Full Text PDFWe demonstrate the quantitative pressure measurement of gas molecules in the mid-infrared using chip-based supercontinuum and cepstrum analysis without additional measurements for baseline normalization. A supercontinuum generated in an on-chip waveguide made of chalcogenide glass having high nonlinearity passes through CO gas and provides a transmission spectrum. The gas absorption information is deconvoluted from the original supercontinuum spectral information containing temporal fluctuation by cepstrum analysis and extracted simply by applying a bandpass filter in the temporal domain.
View Article and Find Full Text PDFWe successfully control the interaction dynamics between optical parametric oscillation (OPO) and stimulated Raman scattering, leading to the generation of distinct frequency comb states in a microresonator. Through Raman-scattered photons, a Raman comb with a sech2 envelope is demonstrated having a broad RF beat note linewidth of several hundred kHz. Moreover, under a specific coupling regime, we successfully generate self-locked Raman single-solitons which is confirmed by a narrow RF beat note of 25 Hz.
View Article and Find Full Text PDFControlling the optical coupling between a micro-resonator and waveguide plays a key role in on-chip photonic circuits. Here, we demonstrate a two-point coupled lithium niobate (LN) racetrack micro-resonator that enables us to electro-optically traverse a full set of the zero-, under-, critical-, and over-coupling regimes with minimized disturbance of the intrinsic properties of the resonant mode. The modulation between the zero- and critical-coupling conditions cost a resonant frequency shift of only ∼344.
View Article and Find Full Text PDFTo efficiently access light waves confined in a high-quality-factor (Q) microcavity over a wide spectral range, it is necessary to independently control coupling efficiency at different wavelengths. Here we suggest an approach to add a degree of freedom to control the coupling efficiency based on a two-point coupling geometry. By changing the phase difference between two paths connecting two coupling points, various combinations of coupling efficiencies at multiple wavelengths can be achieved.
View Article and Find Full Text PDFThis paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure.
View Article and Find Full Text PDFThis study examined the effects of the thickness of Y(2)O(3):Eu(3+) phosphor films on quartz substrates coated with two-dimensional (2D) SiO(2) square-lattice nanorod photonic crystal layers (PCL) at identical heights on their extraction and absorption efficiency. The photoluminescence (PL) efficiency enhancement ratio decreased exponentially with increasing Y(2)O(3):Eu(3+) film thickness. The 2D PCL-assisted Y(2)O(3):Eu(3+) film with a thickness (t) = 400 nm showed enhancement in the upward and downward PL emission by factors of 6.
View Article and Find Full Text PDF