Publications by authors named "Kiyotoshi Kaneko"

The P2 family of receptors for adenosine 5'-triphosphate (ATP) is involved in several neuronal and glial cell functions in the central nervous system (CNS), and impaired function of these receptors is associated with both neuronal and glial dysfunction. Using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis, we examined the expression profiles of P2 subtype receptors in the rat hippocampus following treatment with the neurotoxicant trimethyltin (TMT). Among the subtypes, P2X₁ exhibited a unique profile, with an increase in expression prior to the onset of cell death after TMT administration, and a gradual decrease thereafter in neuronal cells in the rat hippocampus.

View Article and Find Full Text PDF

Time-lapse imaging analysis was previously used to show that spontaneous proteolysis of PrP(C), which is fluorescence-labeled at both NH(2)- and COOH-termini, occurred in mouse neuroblastoma neuro2a (N2a) cells susceptible to PrP(Sc). We demonstrated that, unlike other protease inhibitors, a calpain inhibitor, calpastatin, drastically inhibited endoproteolysis of PrP(C), as observed with time-lapse imaging in living cells, suggesting calpain-like activity. Calpastatin also inhibited cleavage of endogenous PrP(C), and unprocessed molecules and the double-labeled PrP(C) accumulated around the perinuclear region.

View Article and Find Full Text PDF

Aptamers are good molecular recognition elements for biosensors. Especially, their conformational change, which is induced by the binding to the target molecule, enables the development of several types of useful detection systems. We applied this property to bound/free separation, which is a crucial process for highly sensitive detection.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Htt) protein. A hallmark of HD is the presence of aggregates-predominantly composed of NH(2)-terminal fragments of polyQ-expanded Htt-in the nucleus and cytoplasm of affected neurons. We previously proposed that 14-3-3zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates possibly for neuroprotection; these aggregates are referred to as inclusion bodies.

View Article and Find Full Text PDF

Misfolded protein aggregates and inclusion bodies have been associated with various protein conformation disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases including bovine spongiform encephalopathy (BSE). Models have been proposed as plausible explanations for the extension and progression of protein aggregates; however, little is known about the initiation process of protein aggregation, particularly in sporadic neurodegenerative diseases. Epidemiological data have suggested a tight association between sporadic neurodegenerative diseases and history of mechanical stresses such as trauma, head injury, and occupational exposures, including professional soccer and boxer's brain that carries histological hallmarks of AD/PD.

View Article and Find Full Text PDF

Prion disease is a neurodegenerative disorder, in which the normal prion protein (PrP) changes structurally into an abnormal form and accumulates in the brain. There is a great demand for the development of a viable approach to diagnosis and therapy. Not only has the ligand against PrP been used for diagnosis, but it has also become a promising tool for therapy, as an antibody.

View Article and Find Full Text PDF

Prion protein is a highly conserved glycoprotein tethered to cell membranes by a glycosylphosphatidylinositol(GPI) anchor that is expressed in many tissues including brain, heart, and muscle. Although misfolding of the cellular prion protein (PrP(c)) into alternative form, denoted (PrP(Sc)), is a key event in prion infections, the normal function of PrPc remains to be clearly defined. Many PrP(c)-binding proteins have been identified, and several roles for PrP(c) have been suggested, including oxidative stress, cell adhesion, copper uptake, cell survival, protection against oxidative stress, but authentication of these interactions in functional assays is incomplete.

View Article and Find Full Text PDF

The temporospatial profile of cyclooxygenase-2 (COX-2) expression and neuronal degeneration following trimethyltin (TMT) administration was investigated in the rat hippocampus region. In the CA1 region, significant COX-2 expression was detected on day 3 after TMT administration but pyramidal cell degeneration was detected only on day 5 and thereafter. In the CA3 region, on the other hand, the constitutive COX-2 expression remained unchanged, and more severe pyramidal cell degeneration started on day 3.

View Article and Find Full Text PDF

We established a novel combinatorial method of laser microdissection system and immunoblot analysis in combination with a novel unfolding chaperone (oligomeric Aip2p/Dld2p) that enables us to examine the molecular profile of proteins in the microscopic regions of interest. As a model system for analyzing inclusion bodies associated with various diseases such as Alzheimer's disease, Parkinson's disease, and prion diseases including bovine spongiform encephalopathy (BSE), we applied this novel method to examine brain samples of patients with Pick's disease, a type of progressive presenile dementia with intraneuronal lesions denoted as Pick bodies (PBs) whose major structural components are tau proteins. After boiling in Laemmli's sample buffer according to the established immunoblotting procedures, 500-2000 PBs were initially applied onto SDS-PAGE gels; however, only faint signals were obtained.

View Article and Find Full Text PDF

We report the development of a novel screening method for DNA aptamers against multiple proteins in the target tissue. Although a purified single protein is generally used in screening of aptamers at present, such a simultaneous selection would be very advantageous in efficiency and selectivity. We first carried out the screening in situ and it was suggested that aptamers against particular target proteins were enriched.

View Article and Find Full Text PDF

The posttranslational conformational conversion of the cellular isoform of prion protein PrP(C) into its scrapie isoform PrP(Sc) is the fundamental process underlying the pathogenesis of prion disease. Based on several transgenic data, it has been postulated that a putative auxiliary factor denoted protein X functions as a molecular chaperone through its unfolding activity of PrP(C) during the formation of PrP(Sc). However, the assumption that protein X therefore exists exclusively in prion diseases appears improbable and thus, it should have some simultaneous physiological role.

View Article and Find Full Text PDF

Aptamers are oligonucleotide ligands with a high affinity to, and specificity for, various target molecules and they are expected to be powerful tools for proteomic analysis. To select aptamers that bind to a specific unidentified protein in tissues for protein analysis, a screening method was developed using chicken skeletal muscle as a model. Target proteins in the target mixture were separated by electrophoresis and transferred to a membrane, and a DNA library was added onto it.

View Article and Find Full Text PDF

We have developed a novel procedure in which a small collagen sheet (3 mm x 3 mm) absorbing prion-infected brain homogenates was transplanted onto the brain surface of highly prion-susceptible transgenic mice (Tg(MoPrP)4053/FVB), as an animal model of iatrogenic Creutzfeldt-Jakob disease (iCJD) caused by prion-contaminated cadaveric dura graft transplantation. Using the iCJD model, we further investigated the in vivo efficacy of dominant negative recombinant prion protein with lysine substitution at mouse codon 218 (rPrP-Q218K), which is known to inhibit prion replication in vitro (H. Kishida, Y.

View Article and Find Full Text PDF

By utilizing a novel combinatorial method of a Laser Microdissection System and Western blot analysis, we demonstrate that a distinct isoform of abnormally phosphorylated tau (69 kDa, Tau 69) predominantly aggregated in laser-microdissected Pick bodies (PBs) in sporadic Pick's disease. By contrast, tau migrated as two major bands of 60 and 64 kDa (Tau 60 and 64) in total brain homogenates as previously reported. Comparative immunohistochemical analysis with anti-4-repeat antibody revealed that a major component of the abnormally phosphorylated tau in these PBs was 3-repeat tau (3R-tau).

View Article and Find Full Text PDF

Here, we propose a novel hypothesis that 14-3-3 zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates, which are referred to as inclusion bodies. Studies on the localization of the 14-3-3 proteins in different types of inclusion bodies in the brain including neurofibrillary tangle in Alzheimer's disease, pick bodies in Pick's disease, Lewy body-like hyaline inclusions in sporadic amyotrophic lateral sclerosis, prion/florid plaques in sporadic/variant Creutzfeldt-Jakob disease, nuclear inclusions in spinocerebellar ataxia-1, and possibly Lewy bodies in Parkinson's disease suggest a close association of these diseases with 14-3-3 zeta. The highly conserved hydrophobic surface of the amphipathic groove in 14-3-3 zeta represents a general mechanism with diverse cellular proteins, and it may also allow for the molecular recognition of misfolded proteins by hydrophobic interaction in disease conditions.

View Article and Find Full Text PDF

Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions.

View Article and Find Full Text PDF

Huntingtin is a ubiquitously expressed cytoplasmic protein encoded by the Huntington disease (HD) gene, in which a CAG expansion induces an autosomal dominant progressive neurodegenerative disorder; however, its biological function has not been completely elucidated. Here, we report for the first time that short interfering RNA (siRNA)-mediated inhibition of endogenous Hdh (a mouse homologue of huntingtin) gene expression induced an aberrant configuration of the endoplasmic reticulum (ER) network in vitro. Studies using immunofluorescence microscopy with several ER markers revealed that the ER network appeared to be congregated in various types of cell lines transfected with siRNA directed against Hdh, but not with other siRNAs so far tested.

View Article and Find Full Text PDF

We established a histobiochemical approach targeting micron-order inclusion bodies possessing extensive aggregation properties in situ by using a nonchemical denaturant (oligomeric actin interacting protein 2/d-lactate dehydrogenase protein 2 [Aip2p/Dld2p]) with the combinatorial method of laser-microdissection and immunoblot analysis. As a model, pick bodies were chosen and laser-microdissected from three different brain regions of two patients with Pick's disease. Initially, 500 to 2000 pick bodies were applied onto SDS-PAGE gels after boiling in Laemmli's sample buffer according to established immunoblotting procedures; however, only faint signals were obtained.

View Article and Find Full Text PDF

Inflammation is profoundly involved in the development of Alzheimer's disease (AD) and other neurodegenerative diseases. Chemokine, CXC motif, ligand 1 (CXCL1; or GRO1) is an inflammatory cytokine and appears to be implicated in the pathogenesis of AD. It is of interest and importance to see if the CXCL1 gene, mapped on chromosome 4q12-q13, has potential for conferring the predisposition to AD.

View Article and Find Full Text PDF

A pathogenic truncation of an amber mutation at codon 145 (Y145STOP) in Gerstmann-Straussler-Scheinker disease (GSS) was investigated through the real-time imaging in living cells, by utilizing GFP-PrP constructs. GFP-PrP(1-144) exhibited an aberrant localization to mitochondria in mouse neuroblastoma neuro2a (N2a) and HpL3-4 cells, a hippocampal cell line established from prnp gene-ablated mice, whereas full-length GFP-PrP did not. The aberrant mitochondrial localization was also confirmed by Western blot analysis.

View Article and Find Full Text PDF

Recent studies suggest that the disease isoform of prion protein (PrPSc) is non-neurotoxic in the absence of cellular isoform of prion protein (PrPC), indicating that PrPC may participate directly in the neurodegenerative damage by itself. Meanwhile, transgenic mice harboring a high-copy-number of wild-type mouse (Mo) PrPC develop a spontaneous neurological dysfunction in an age-dependent manner, even without inoculation of PrPSc and thus, investigations of these aged transgenic mice may lead to the understanding how PrPC participate in the neurotoxic property of PrP. Here we demonstrate mitochondria-mediated neuronal apoptosis in aged transgenic mice overexpressing wild-type MoPrPC (Tg(MoPrP)4053/FVB).

View Article and Find Full Text PDF