Phagosome formation and maturation reportedly occur via sequential membrane fusion events mediated by synaptosomal-associated protein of 23 kDa (SNAP23), a plasma membrane-localized soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. Vesicle-associated membrane protein 5 (VAMP5), also a plasmalemma SNARE, interacts with SNAP23; however, its precise function in phagocytosis in macrophages remains elusive. To elucidate this aspect, we investigated the characteristics of macrophages in the presence of VAMP5 overexpression or knockdown and found that VAMP5 participates in Fcγ receptor-mediated phagosome formation, although not directly in phagosome maturation.
View Article and Find Full Text PDFSynaptosomal associated protein of 23 kDa (SNAP23), a plasma membrane-localized soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE), is a ubiquitously expressed protein that is generally involved in fusion of the plasma membrane and secretory or endosomal recycling vesicles during several types of exocytosis. SNAP23 is expressed in phagocytes, such as neutrophils, macrophages, and dendritic cells, and functions in both exocytosis and phagocytosis. This review focuses on the function of SNAP23 in immunoglobulin G Fc receptor-mediated phagocytosis by macrophages.
View Article and Find Full Text PDFDNA demethylation and suppression of de novo DNA methylation are activities that maintain an unmethylated state. However, the strength of these two activities at the same locus has not been estimated separately. Furthermore, the association between these two activities and the unmethylated state remains unclear.
View Article and Find Full Text PDFBackground: Programmed cell death 1 (PD-1) is one of the immune checkpoint molecules that negatively regulate the function of T cells. Although recent studies indicate that PD-1 is also expressed on other immune cells besides T cells, its role remains unclear. This study aims to evaluate PD-1 expression on macrophages and examine its effect on anti-tumor immunity in gastric cancer (GC) patients.
View Article and Find Full Text PDFThe methylation status of imprinting control center 1 (IC1) regulates the monoallelic transcription of H19 and Igf2 in mammalian cells. Several single nucleotide variants in Oct motifs within IC1 occur in patients with Beckwith-Wiedemann syndrome (BWS) who have hypermethylated maternal IC1. However, the importance of Oct motifs in the regulation of IC1 methylation status remains unclear.
View Article and Find Full Text PDFSyntaxin 11 (stx11) is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) that is selectively expressed in immune cells; however, its precise role in macrophages is unclear. We showed that stx11 knockdown reduces the phagocytosis of Escherichia coli in interferon-γ-activated macrophages. stx11 knockdown decreased Toll-like receptor 4 (TLR4) localization on the plasma membrane without affecting total expression.
View Article and Find Full Text PDFSNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages.
View Article and Find Full Text PDFThe paternal-allele-specific methylation of the Igf2/H19 imprinting control region (ICR) is established during gametogenesis and maintained throughout development. To elucidate the requirement of the germline passage in the maintenance of the imprinting methylation, we established a system introducing a methylated or unmethylated ICR-containing DNA fragment (ICR-F) into the paternal or maternal genome by microinjecting into the paternal or maternal pronucleus of fertilized eggs, and traced the methylation pattern in the ICR-F. When the ICR-F was injected in a methylated form, it was demethylated approximately to half degree at blastocyst stage but was almost completely remethylated at 3 weeks of age.
View Article and Find Full Text PDFPhagosome formation and maturation are essential innate immune mechanisms to engulf and digest foreign particles. To analyze these processes quantitatively, we established a specific Escherichia coli probe expressing a tandem fluorescent protein, comprising glutathione S-transferase fused with monomeric Cherry (mCherry) and monomeric Venus (mVenus). We demonstrated that mVenus was more susceptible to bleaching in an acidic environment than mCherry, and that the mVenus:mCherry fluorescence intensity ratio can be used to monitor phagosomal pH changes during maturation.
View Article and Find Full Text PDFBackground: Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.
View Article and Find Full Text PDFWe recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)-transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn-TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn-TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery.
View Article and Find Full Text PDFSynaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus-tagged SNAP-23 was established. These cells showed enhanced Fc receptor-mediated phagocytosis.
View Article and Find Full Text PDFMolecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins.
View Article and Find Full Text PDFParasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway.
View Article and Find Full Text PDFMacrophages that express representative endoplasmic reticulum (ER) molecules tagged with green fluorescence protein were generated to assess the recruitment of ER molecules to Leishmania parasitophorous vacuoles (PVs). More than 90% of PVs harbouring Leishmania pifanoi or Leishmania donovani parasites recruited calnexin, to their PV membrane. An equivalent proportion of PVs also recruited the membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), Sec22b.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is proposed to be a membrane donor for phagosome formation. In support of this, we have previously shown that the expression level of syntaxin 18, an ER-localized SNARE protein, correlates with phagocytosis activity. To obtain further insights into the involvement of the ER in phagocytosis we focused on Sec22b, another ER-localized SNARE protein that is also found on phagosomal membranes.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
December 2008
The quality of cargo proteins in the endoplasmic reticulum (ER) is affected by their motion during folding. To understand how the diffusion of secretory cargo proteins is regulated in the ER, we directly analyze the motion of a single cargo molecule using fluorescence imaging/fluctuation analyses. We find that the addition of two N-glycans onto the cargo dramatically alters their diffusion by transient binding to membrane components that are confined by hyperosmolarity.
View Article and Find Full Text PDFMembrane-anchored Neuregulin beta1 sheds its ectodomain as soluble factors. Two proteases that belong to a disintegrin and metalloprotease (ADAM) family are known to cleave Neuregulin beta1. One is tumor necrosis factor-alpha converting enzyme (TACE/ADAM17).
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is thought to play an important structural and functional role in phagocytosis. According to this model, direct membrane fusion between the ER and the plasma or phagosomal membrane must precede further invagination, but the exact mechanisms remain elusive. Here, we investigated whether various ER-localized SNARE proteins are involved in this fusion process.
View Article and Find Full Text PDFThe cellular endomembrane system requires the proper kinetic balance of synthesis and degradation of its individual components, which is maintained in part by a specific membrane fusion apparatus. In this study, we describe the molecular properties of D12, which was identified from a mouse expression library. This C-terminal anchored membrane protein has sequence similarity to both a yeast soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE), Use1p/Slt1p, and a recently identified human syntaxin 18-binding protein, p31.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2005
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking.
View Article and Find Full Text PDF