The light oxygen voltage (LOV) domain is a flavin-binding blue-light receptor domain, originally found in a plant photoreceptor phototropin (phot). Recently, LOV domains have been used in optogenetics as the photosensory domain of fusion proteins. Therefore, it is important to understand how LOV domains exhibit light-induced structural changes for the kinase domain regulation, which enables the design of LOV-containing optogenetics tools with higher photoactivation efficiency.
View Article and Find Full Text PDFElectron-transferring flavoprotein (ETF) from Megasphaera elsdenii contains two FAD molecules, FAD-1 and FAD-2. FAD-2 shows an unusual absorption spectrum with a 400-nm peak. In contrast, ETFs from other sources such as pig contain one FAD and one AMP with the FAD showing a typical flavin absorption spectrum with 380- and 440-nm peaks.
View Article and Find Full Text PDFElectron-transferring flavoprotein (ETF) from the anaerobic bacterium Megasphaera elsdenii is a heterodimer containing two FAD cofactors. Isolated ETF contains only one FAD molecule, FAD-1, because the other, FAD-2, is lost during purification. FAD-2 is recovered by adding FAD to the isolated ETF.
View Article and Find Full Text PDFThe interactions of acyl-CoA with medium-chain acyl-CoA dehydrogenases (MCADs) reconstituted with artificial FADs-i.e. 8-CN-, 7,8-Cl(2)-, 8-Cl-, 8-OCH(3)- and 8-NH(2)-FAD-were investigated by UV-visible absorption and FT-IR measurements.
View Article and Find Full Text PDFElectron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra.
View Article and Find Full Text PDFThe intramolecular and intermolecular perturbation on the electronic state of FAD was investigated by FTIR spectroscopy by using the C=O stretching vibrations as probes in D(2)O solution. Natural and artificial FADs, i.e.
View Article and Find Full Text PDFUltrafast fluorescence quenching of flavin in flavodoxin from Megasphaera elsdenii was investigated by means of a fluorescence up-conversion method. Fluorescence lifetimes of flavodoxin from M. elsdenii were estimated to be tau(1) approximately 165 fs (0.
View Article and Find Full Text PDFPhototropin, a blue-light photoreceptor in plants, has two FMN-binding domains named LOV1 and LOV2. We previously observed temperature-dependent FTIR spectral changes in the C=O stretching region (amide-I vibrational region of the peptide backbone) for the LOV2 domain of Adiantum phytochrome3 (phy3-LOV2), suggesting progressive structural changes in the protein moiety (Iwata, T., Nozaki, D.
View Article and Find Full Text PDFComparison of the primary structures of pig kidney D-amino acid oxidase (DAO) and human brain D-aspartate oxidase (DDO) revealed a notable difference at I215-N225 of DAO and the corresponding region, R216-G220, of DDO. A DAO mutant, in which I215-N225 is substituted by R216-G220 of DDO, showed D-aspartate-oxidizing activity that wild-type DAO does not exhibit, together with a considerable decrease in activity toward D-alanine. These findings indicate that I215-N225 of DAO contributes profoundly to its substrate specificity.
View Article and Find Full Text PDFAcyl-CoA dehydrogenase forms a complex with a substrate analog, 3-thiaacyl-CoA, exhibiting a charge-transfer (CT) band. The structure of a complex model of oxidized lumiflavin with deprotonated 3-thiabutanoate ethylthioester designed for the above CT complex was fully optimized by means of density functional theory (DFT), the spatial arrangement being similar to the corresponding X-ray structure reported previously. The electrostatic interaction between flavin and an anionic ligand, therefore, plays a major role in determination of the arrangement of the CT complex.
View Article and Find Full Text PDFThe three-dimensional structure of rat-liver acyl-CoA oxidase-II (ACO-II) in a complex with a C12-fatty acid was solved by the molecular replacement method based on the uncomplexed ACO-II structure. The crystalline form of the complex was obtained by cocrystallization of ACO-II with dodecanoyl-CoA. The crystalline complex possessed, in the active-site crevice, only the fatty acid moiety that had been formed through hydrolysis of the thioester bond.
View Article and Find Full Text PDFPhotoactivated adenylyl cyclase (PAC) is a recently discovered blue-light photoreceptor that mediates photomovement in Euglena gracilis(Iseki et al., Nature, 2002, 415, 1047--1051). PAC appears to be a heterotetramer composed of two FAD-binding subunits (PACalpha and PACbeta).
View Article and Find Full Text PDFThe pKa value of a substrate analogue 3-thiaoctanoyl-CoA at alphaC-H is known to drop from ca. 16 in the free state to 5-6 upon binding to medium-chain acyl-CoA dehydrogenase (MCAD). The molecular mechanism underlying this phenomenon was investigated by taking advantage of artificial FADs, i.
View Article and Find Full Text PDFElectron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii.
View Article and Find Full Text PDFThe flavoenzyme medium-chain acyl-CoA dehydrogenase (MCAD) eliminates the alpha-proton of the substrate analog, 3-thiaoctanoyl-CoA (3S-C8-CoA), to form a charge-transfer complex with deprotonated 3S-C8-CoA. This complex can simulate the metastable reaction intermediate immediately after the alpha-proton elimination of a substrate and before the beta-hydrogen transfer as a hydride, and is therefore regarded as a transition-state analog. The crystalline complex was obtained by co-crystallizing MCAD in the oxidized form with 3S-C8-CoA.
View Article and Find Full Text PDFThe dynamic natures of two hydrogen-bonding model systems, riboflavin tetrabutylate (RFTB)-trichloroacetic acid (TCA) and RFTB-phenol in benzene, and of electron-transferring flavoprotein (ETF) from pig kidney upon excitation of flavins was investigated by means of steady state and time-resolved fluorescence spectroscopy. In both model systems fluorescence intensities of RFTB decreased as TCA or phenol was added. The spectral characteristics of ETF under steady state excitation were quite similar to those of the RFTB-TCA system, but not to those of the RFTB-phenol system.
View Article and Find Full Text PDFBlue light regulates processes such as the development of plants and fungi and the behaviour of microbes. Two types of blue-light receptor flavoprotein have been identified: cryptochromes, which have partial similarity to photolyases, and phototropins, which are photoregulated protein kinases. The former have also been found in animals with evidence of essential roles in circadian rhythms.
View Article and Find Full Text PDFAcyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.
View Article and Find Full Text PDFAccording to the three-dimensional structure of a porcine kidney D-amino acid oxidase-substrate (D-leucine) complex model, the G313 backbone carbonyl recognizes the substrate amino group by hydrogen bonding and the side-chain hydroxyl of T317 forms a hydrogen bond with C(2)=O of the flavin moiety of FAD [Miura et al. (1997) J. Biochem.
View Article and Find Full Text PDF