Publications by authors named "Kiyoshi Miki"

Out of millions of ejaculated sperm, a few reach the fertilization site in mammals. Flagellar Ca signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca and phosphorylation cascades.

View Article and Find Full Text PDF

We report that the () and () genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.

View Article and Find Full Text PDF

Background: In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals.

View Article and Find Full Text PDF

Sperm cells acquire hyperactivated motility as they ascend the female reproductive tract, which enables them to overcome barriers and penetrate the cumulus and zona pellucida surrounding the egg. This enhanced motility requires Ca(2+) entry via cation channel of sperm (CatSper) Ca(2+)-selective ion channels in the sperm tail. Ca(2+) entry via CatSper is enhanced by the membrane hyperpolarization mediated by Slo3, a K(+) channel also present in the sperm tail.

View Article and Find Full Text PDF

During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm.

View Article and Find Full Text PDF

Signaling by cAMP-dependent protein kinase (PKA) plays an important role in the regulation of mammalian sperm motility. However, it has not been determined how PKA signaling leads to changes in motility, and specific proteins responsible for these changes have not yet been identified as PKA substrates. Anti-phospho-(Ser/Thr) PKA substrate antibodies detected a sperm protein with a relative molecular weight of 270,000 (p270), which was phosphorylated within 1 min after incubation in a medium supporting capacitation.

View Article and Find Full Text PDF
Energy metabolism and sperm function.

Soc Reprod Fertil Suppl

November 2007

Energy metabolism is a key factor supporting sperm function. Sustaining sperm motility and active protein modifications such as phosphorylation could be the reason why sperm require exceptionally more ATP than other cells. Many methods have been used to understand the relationship between energy metabolism and sperm function.

View Article and Find Full Text PDF

The fibrous sheath is a cytoskeletal structure located in the principal piece of mammalian sperm flagella. Previous studies showed that glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS), a germ cell-specific glycolytic isozyme that is required for sperm motility, is tightly bound to the fibrous sheath. To determine if other glycolytic enzymes are also bound to this cytoskeletal structure, we isolated highly purified fibrous sheath preparations from mouse epididymal sperm using a sequential extraction procedure.

View Article and Find Full Text PDF

Although glycolysis is highly conserved, it is remarkable that several unique isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like its human ortholog (GAPD2), is the sole GAPDH isozyme in sperm. It is tightly bound to the fibrous sheath, a cytoskeletal structure that extends most of the length of the sperm flagellum.

View Article and Find Full Text PDF

The fibrous sheath is a unique cytoskeletal structure located in the principal piece of the sperm flagellum and is constructed of two longitudinal columns connected by closely spaced circumferential ribs. Cyclic AMP-dependent protein kinases are secured within specific cytoplasmic domains by A-kinase anchoring proteins (AKAPs), and the most abundant protein in the fibrous sheath is AKAP4. Several other fibrous sheath proteins have been identified, but how the fibrous sheath assembles is not understood.

View Article and Find Full Text PDF

The testis brain RNA-binding protein (TB-RBP/translin) is a DNA- and RNA-binding protein with multiple functions. As an RNA-binding protein, TB-RBP binds to conserved sequence elements often present in the 3' untranslated regions (UTRs) of specific mRNAs modulating their translation and transport. To identify additional mRNA targets of TB-RBP, immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) assays were carried out using an affinity-purified antibody to TB-RBP with testicular extracts.

View Article and Find Full Text PDF

A-kinase anchoring proteins (AKAPs) tether cyclic AMP-dependent protein kinases and thereby localize phosphorylation of target proteins and initiation of signal-transduction processes triggered by cyclic AMP. AKAPs can also be scaffolds for kinases and phosphatases and form macromolecular complexes with other proteins involved in signal transduction. Akap4 is transcribed only in the postmeiotic phase of spermatogenesis and encodes the most abundant protein in the fibrous sheath, a novel cytoskeletal structure present in the principal piece of the sperm flagellum.

View Article and Find Full Text PDF

Self-aggregation of tumor necrosis factor receptor type 1 (TNFR1) induces spontaneous downstream signaling and results in cell death. It has been suggested that silencer of death domain (SODD) binds TNFR1 monomers to prevent self-aggregation. We found that SODD binds through its BAG domain to the ATPase domain of Hsp70.

View Article and Find Full Text PDF