Background: Exercise training is an effective therapy for nonalcoholic fatty liver disease (NAFLD). Hybrid training (HYB) of voluntary and electrical muscle contractions was developed to prevent disuse atrophy during space flight. HYB can be applied to obtain a strength training effect accompanying articular movement.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
Among several characteristics seen in gait of hemiplegic patients after stroke, symmetry is known to be an indicator of the degree of impairment of walking ability. This paper proposes a control method for a wearable type lower limb motion assist robot to realize spontaneous symmetric gait for these individuals. This control method stores the motion of the unaffected limb during swing and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
May 2016
Dysphagia can cause serious challenges to both physical and mental health. Aspiration due to dysphagia is a major health risk that could cause pneumonia and even death. The videofluoroscopic swallow study (VFSS), which is considered the gold standard for the diagnosis of dysphagia, is not widely available, expensive and causes exposure to radiation.
View Article and Find Full Text PDFTher Clin Risk Manag
November 2014
IEEE Trans Neural Syst Rehabil Eng
March 2015
This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2014
We have been developing the Robot Mask with shape memory alloy based actuators that follows an approach of manipulating the skin through a minimally obtrusive wires, transparent strips and tapes based pulling mechanism to enhance the expressiveness of the face. For achieving natural looking facial expressions by taking the advantage of specific characteristics of the skin, the Robot Mask follows a human anatomy based criteria in selecting these manipulation points and directions. In this paper, we describe a case study of using the Robot Mask to assist physiotherapy of a hemifacial paralyzed patient.
View Article and Find Full Text PDFBackground: Locomotor training using robots is increasingly being used for rehabilitation to reduce manpower and the heavy burden on therapists, and the effectiveness of such techniques has been investigated. The robot suit Hybrid Assistive Limb (HAL) has been developed to rehabilitate or support motor function in people with disabilities. The HAL provides motion support that is tailored to the wearer's voluntary drive.
View Article and Find Full Text PDFObjective: To investigate the feasibility of rehabilitation training with a new wearable robot.
Design: Before-after clinical intervention.
Setting: University hospital and private rehabilitation facilities.
Annu Int Conf IEEE Eng Med Biol Soc
March 2011
Our goal is to enhance the quality of life of patients with hemiplegia by means of an active motion support system that assists the impaired motion such as to make it as close as possible to the motion of an able bodied person. We have developed the Robot Suit HAL (Hybrid Assistive Limb) to actively support and enhance the human motor functions. The purpose of the research presented in this paper is to propose the required control method to support voluntarily motion using a trigger based on patient's bioelectrical signal.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Our goal is to try to enhance the QoL of persons with hemiplegia by the mean of an active motion support system based on the HAL's technology. The HAL (Hybrid Assistive Limb) in its standard version is an exoskeleton-based robot suit to support and enhance the human motor functions. The purpose of the research presented in this paper is the development of a new version of the HAL to be used as an assistive device providing walking motion support to persons with hemiplegia.
View Article and Find Full Text PDF