The objective of this chapter is to provide a detailed protocol for the peptidoglycan (cell wall) labeling of the periodontal pathogen Tannerella forsythia and the development of a laboratory-safe Escherichia coli strain utilizing the N-acetylmuramic acid recycling enzymes AmgK, N-acetylmuramate/N-acetylglucosamine kinase, and MurU, N-acetylmuramate alpha-1-phosphate uridylyltransferase, from T. forsythia. The procedure involves bioorthogonal labeling of bacterial cells with an azido-modified analog of the amino sugar, N-acetylmuramic acid, through "click chemistry" with a fluorescent dye.
View Article and Find Full Text PDFThe oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides.
View Article and Find Full Text PDFThe periodontal pathogen Tannerella forsythia expresses a β-glucanase (GlcA) whose expression is induced in response to Fusobacterium nucleatum, a bridge bacterium of the oral cavity. GlcA cleaves β-glucans to release glucose, which can serve as a carbon source for F. nucleatum and other cohabiting organisms.
View Article and Find Full Text PDFThe human oral microbiome is the second largest microbial community in humans, harboring over 700 bacterial species, which aid in digestion and protect from growth of disease-causing pathogens. One such oral pathogen, along with other species, contributes to the pathogenesis of periodontitis. is unable to produce its own -acetylmuramic acid (NAM) sugar, essential for peptidoglycan biosynthesis and therefore must scavenge NAM from other species with which it cohabitates.
View Article and Find Full Text PDFTannerella forsythia is strongly implicated in the development of periodontitis, an inflammatory disease that destroys the bone and soft tissues supporting the tooth. To date, the knowledge of the virulence attributes of T. forsythia species has mainly come from studies with a laboratory adapted strain (ATCC 43037).
View Article and Find Full Text PDFRecent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression.
View Article and Find Full Text PDFPeriodontitis is a bacterially-induced inflammatory disease that leads to tooth loss. It results from the damaging effects of a dysregulated immune response, mediated largely by neutrophils, macrophages, T cells and B cells, on the tooth-supporting tissues including the alveolar bone. Specifically, infiltrating B cells at inflamed gingival sites with an ability to secrete RANKL and inflammatory cytokines are thought to play roles in alveolar bone resorption.
View Article and Find Full Text PDFThe objective of this chapter is to provide a detailed purification protocol for the surface-layer (S-layer) glycoproteins of the periodontal pathogen Tannerella forsythia. The procedure involves detergent based solubilization of the bacterial S-layer followed by cesium chloride gradient centrifugation and gel permeation chromatography. The protocol is suitable for the isolation of S-layer glycoproteins from T.
View Article and Find Full Text PDFKey to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: , and . These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2018
Background: Porphyromonas gingivalis and Treponema denticola are both principally implicated in the incidence of both periodontal disease and peri-implantitis. Recent studies have demonstrated that these bacteria exhibit symbiotic growth in vitro and a synergistic virulence in co-infection of animal models. Found at varying depths throughout the biofilm, these bacteria present a significant challenge to traditional antimicrobial treatment modalities.
View Article and Find Full Text PDFOral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages.
View Article and Find Full Text PDFand are dental plaque bacteria implicated in the development of periodontitis. These two species have been shown to form synergistic biofilms and have been found to be closely associated in dental plaque biofilms. A number of genetic loci for TonB-dependent membrane receptors (TDR) for glycan acquisition, with many existing in association with genes coding for enzymes involved in the breakdown of complex glycans, have been identified in In this study, we focused on a locus, BFO_0186-BFO_0188, that codes for a predicted TDR-SusD transporter along with a putative β-glucan hydrolyzing enzyme (BFO_0186).
View Article and Find Full Text PDFis a Gram-negative oral anaerobe associated with periodontitis. This bacterium is auxotrophic for the peptidoglycan amino sugar -acetylmuramic (MurNAc) and likely relies on scavenging peptidoglycan fragments (muropeptides) released by cohabiting bacteria during their cell wall recycling. Many Gram-negative bacteria utilize an inner membrane permease, AmpG, to transport peptidoglycan fragments into their cytoplasm.
View Article and Find Full Text PDFThe oral pathogen Tannerella forsythia is implicated in the development of periodontitis, a common inflammatory disease that leads to the destruction of the gum and tooth supporting tissues, often leading to tooth loss. T. forsythia is a unique Gram-negative organism endowed with an elaborate protein O-glycosylation system that allows the bacterium to express a glycosylated surface (S)-layer comprising two high molecular weight glycoproteins modified with O-linked oligosaccharides.
View Article and Find Full Text PDFWe report the genome sequences of three clinical isolates of Tannerella forsythia from the subgingival plaque of periodontitis patients attending clinics at the School of Dental Medicine, University at Buffalo. The availability of these genome sequences will aid the understanding of the pathogenesis of periodontitis.
View Article and Find Full Text PDFBackground: Dental implants are commonly used today for the treatment of partially and fully edentulous patients. Despite the high success rate they are not resistant to complications and failure due to a variety of problems including peri-implantitis or peri-mucositis due to bacterial biofilm formation on the implant surface. The use of non-surgical and surgical treatment procedure to promote healing in cases with peri-implantitis have limited efficacy.
View Article and Find Full Text PDFTannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth.
View Article and Find Full Text PDFAlveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone.
View Article and Find Full Text PDFProtein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation.
View Article and Find Full Text PDFTannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F.
View Article and Find Full Text PDFTannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2011
The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host-pathogen interactions in vitro.
View Article and Find Full Text PDFInfect Immun
January 2011
Tannerella forsythia is a Gram-negative oral anaerobe which contributes to the development of periodontitis, an inflammatory disease of the tooth-supporting tissues leading to tooth loss. The mechanisms by which this bacterium colonizes the oral cavity are poorly understood. The bacterium has been shown to express two distinct sialidases, namely, SiaHI and NanH, with the latter being the major sialidase.
View Article and Find Full Text PDFTannerella forsythia is an anaerobic periodontal pathogen that encounters constant oxidative stress in the human oral cavity due to exposure to air and reactive oxidative species from coexisting dental plaque bacteria as well as leukocytes. In this study, we sought to characterize a T. forsythia ORF with close similarity to bacterial oxidative stress response sensor protein OxyR.
View Article and Find Full Text PDFTannerella forsythia is a gram-negative anaerobe strongly associated with chronic human periodontitis. This bacterium expresses a cell surface-associated and secreted protein, designated BspA, which has been recognized as an important virulence factor. The BspA protein belongs to the leucine-rich repeat (LRR) and bacterial immunoglobulin-like protein families.
View Article and Find Full Text PDF