Publications by authors named "Kiyomi Mizugishi"

Familial Mediterranean fever (FMF), the most common autoinflammatory disorder, is characterized by recurrent febrile attacks and polyserositis. FMF is caused by mutations in MEFV, which encodes pyrin. In this report, we present an atypical FMF case with E148Q/L110P mutations in MEFV.

View Article and Find Full Text PDF

Exaggerated maternal immune responses must be strictly controlled to ensure a successful pregnancy. Neutrophil extracellular traps (NETs) have recently been implicated as a potential mechanism for promoting inflammation in pregnancy-related disorders. In this study, we demonstrated that NETs play a key role in the pathogenesis of sphingosine kinase (Sphk)-mediated pregnancy loss.

View Article and Find Full Text PDF

The abnormal immune response accompanying IgG4-related autoimmune pancreatitis (AIP) is presently unclear. In this study, we examined the role of plasmacytoid dendritic cell (pDC) activation and IFN-α production in this disease as well as in a murine model of AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid). We found that the development of AIP in treated MRL/Mp mice occurred in parallel with pancreatic accumulation of pDCs producing IFN-α, and with pDC depletion and IFN-α-blocking studies, we showed that such accumulation was necessary for AIP induction.

View Article and Find Full Text PDF

Background: Presepsin, a soluble CD14 subtype, is increasingly recognized as a useful biomarker for sepsis. However, little is known about the biological characteristics of presepsin in humans. Furthermore, there are no studies evaluating clinical validity of measuring the presepsin levels in patients after allogeneic hematopoietic cell transplantation, irrespective of the high frequency of sepsis.

View Article and Find Full Text PDF

For a successful pregnancy, the mother's immune system has to tolerate the semiallogeneic fetus. A deleterious immune attack is avoided by orchestration of cellular, hormonal, and enzymatic factors. However, the precise mechanisms underlying fetomaternal tolerance are not yet completely understood.

View Article and Find Full Text PDF

Objectives: Late-onset neutropenia after rituximab (RTX) therapy (R-LON) has been widely reported, but clinical studies on a large number of cases are limited. In this study, we aimed to investigate the incidence and risk factors of R-LON.

Patients And Methods: In this study, we retrospectively analyzed data of 213 enrolled B-cell lymphoma patients (male 114; female 99) treated with RTX at a single institution.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement.

View Article and Find Full Text PDF

Transplantation-associated thrombotic microangiopathy (TA-TMA) is a devastating complication of hematopoietic stem cell transplantation. TA-TMA likely represents the final stage of vascular endothelial injury; however, its pathophysiology is largely unknown, making clinical management difficult. Recently, the association of neutrophil extracellular traps (NETs) with the development of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome has been reported.

View Article and Find Full Text PDF

Invasive pulmonary aspergillosis (IPA) is a life-threatening complication of chronic granulomatous disease (CGD), a rare inherited disorder of phagocytes that is characterized by a defect in the production of reactive oxygen species (ROS) caused by mutations in NADPH oxidase 2. Here, we report a case of successful treatment of IPA complicated with CGD by the administration of interferon-γ (IFN-γ) in combination with voriconazole. The patient carried a splice site mutation in the CYBB gene, and the neutrophils could produce a certain amount of ROS.

View Article and Find Full Text PDF

There is a growing body of evidences that acquired chromosomal abnormalities in bone marrow (BM) cells are associated with clinical manifestations of myelodysplastic syndrome (MDS). However, to our knowledge, there are no reports that describe the association between chromosomal abnormalities in MDS and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT). Here, we describe two MDS cases with trisomy 8 and der(1;7)(q10;p10), who developed severe GVHD after allo-SCT.

View Article and Find Full Text PDF

Sepsis is a generalized inflammatory disease, caused by the hyperinflammatory response of the host, rather than by invading organisms. Endothelial cells play a crucial role in the pathogenesis of sepsis. In this study, we investigated the effects of interleukin-8 (IL-8), a known neutrophil chemoattractant, on lipopolysaccharide (LPS) -induced reactive oxygen species (ROS) production by endothelial cells, and its significance in the pathogenesis of LPS-mediated sepsis.

View Article and Find Full Text PDF

Aims: Sphingosine kinase 1 (SPHK1), its product sphingosine-1-phosphate (S1P), and S1P receptor subtypes have been suggested to play protective roles for cardiomyocytes in animal models of ischaemic preconditioning and cardiac ischaemia/reperfusion injury. To get more insight into roles for SPHK1 in vivo, we have generated SPHK1-transgenic (TG) mice and analysed the cardiac phenotype.

Methods And Results: SPHK1-TG mice overexpressed SPHK1 in diverse tissues, with a nearly 20-fold increase in enzymatic activity.

View Article and Find Full Text PDF

Reactive oxygen species produced by phagocytosing neutrophils are essential for innate host defense against invading microbes. Previous observations revealed that antibody-catalyzed ozone formation by human neutrophils contributed to the killing of bacteria. In this study, we discovered that 4 amino acids themselves were able to catalyze the production of an oxidant with the chemical signature of ozone from singlet oxygen in the water-oxidation pathway, at comparable level to antibodies.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a lipid-signaling molecule produced by sphingosine kinase in response to a wide number of stimuli. By acting through a family of widely expressed G protein-coupled receptors, S1P regulates diverse physiological processes. Here we examined the role of S1P signaling in neurodegeneration using a mouse model of Sandhoff disease, a prototypical neuronopathic lysosomal storage disorder.

View Article and Find Full Text PDF

We identified and characterized a novel RING finger gene, Rines/RNF180, which is well conserved among vertebrates. Putative Rines gene product (Rines) contains a RING finger domain, a basic coiled-coil domain, a novel conserved domain (DSPRC) and a C-terminal hydrophobic region that is predicted to be a transmembrane domain. N-terminally epitope tagged-Rines (Nt-Rines) was detected in the endoplasmic reticulum membrane/nuclear envelope in cultured mammalian cells.

View Article and Find Full Text PDF

Aims: The lysophospholipid mediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration, proliferation, and capillary-like tube formation in vitro. It is unknown whether S1P stimulates in vivo angiogenesis induced under tissue ischaemia. We investigated the effects of both exogenously and endogenously overproduced S1P on post-ischaemic angiogenesis in murine hindlimbs.

View Article and Find Full Text PDF

Uterine decidualization, a process that occurs in response to embryo implantation, is critical for embryonic survival and thus is a key event for successful pregnancy. Here we show that the sphingolipid metabolic pathway is highly activated in the deciduum during pregnancy and disturbance of the pathway by disruption of sphingosine kinase (Sphk) genes causes defective decidualization with severely compromised uterine blood vessels, leading to early pregnancy loss. Sphk-deficient female mice (Sphk1(-/-)Sphk2(+/-)) exhibited both an enormous accumulation of dihydrosphingosine and sphingosine and a reduction in phosphatidylethanolamine levels in pregnant uteri.

View Article and Find Full Text PDF

Sphingosine-1-phosphate, a key mediator in immune cell trafficking, is elevated in the lungs of asthmatic patients and regulates pulmonary epithelium permeability. Stimulation of mast cells by allergens induces two mammalian sphingosine kinases (Sphk1 and Sphk2) to produce sphingosine-1-phosphate (S1P). Little is known about the individual role of these kinases in regulating immune cell function.

View Article and Find Full Text PDF

Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of bone marrow-derived mast cells (BMMC). Fyn kinase is required for FcepsilonRI coupling to SphK1 and -2 and for subsequent S1P production.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), an important sphingolipid metabolite, regulates diverse cellular processes, including cell survival, growth, and differentiation. Here we show that S1P signaling is critical for neural and vascular development. Sphingosine kinase-null mice exhibited a deficiency of S1P which severely disturbed neurogenesis, including neural tube closure, and angiogenesis and caused embryonic lethality.

View Article and Find Full Text PDF

Zinc finger proteins belonging to the Zic family control several developmental processes such as patterning of the axial skeleton. Here we mapped the transcriptional regulatory domains in Zic2 protein and identified a protein which specifically binds to one of them. In the mapping experiments, an amino-terminal region was identified as transcriptional regulatory domains.

View Article and Find Full Text PDF

The Brachyury gene has a critical role in the formation of posterior mesoderm and notochord in vertebrate development. A recent study showed that Brachyury is also responsible for the formation of the left-right (L-R) axis in mouse and zebrafish. However, the role of Brachyury in L-R axis specification is still elusive.

View Article and Find Full Text PDF