Triplet-triplet annihilation (TTA)-assisted photon upconversion (TTA-UC) in three dyads (DPA-Cn-DPA), comprised of two diphenylanthracene (DPA) moieties connected by nonconjugated C1, C2, and C3 linkages (Cn), has been investigated. The performance of these dyads as energy acceptors in the presence of the energy donor platinum octaethylporphyrin are characterized by longer triplet lifetimes (τ) and different TTA rate constants than those of the parent DPA. The larger τ of the linked systems, caused by "intramolecular energy hopping" in the triplet dyad DPA*-Cn-DPA, results in a low threshold intensity, a key characteristic of efficient TTA-UC.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) provide potential treatments for peritoneal fibrosis. However, MSCs cultured in media containing serum bring risks of infection and other problems. In this study, we compared the effect of human MSCs in serum-free medium (SF-MSCs) on peritoneal fibrosis with that of MSCs cultured in medium containing 10% fetal bovine serum (10%MSCs).
View Article and Find Full Text PDFPreviously, we found that the basic helix-loop-helix transcriptional repressor DEC1 interacts with the PPARγ:RXRα heterodimer, a master transcription factor for adipogenesis and lipogenesis, to suppress transcription from PPARγ target genes (Noshiro et al., Genes to Cells, 2018, 23:658-669). Because the expression of PPARγ and several of its target genes exhibits circadian rhythmicity in white adipose tissue (WAT), we examined the expression profiles of PPARγ target genes in wild-type and Dec1 mice.
View Article and Find Full Text PDFBlood pressure shows a circadian rhythm, and recent studies have suggested the involvement of a molecular clock system in its control. In the clock system, the CLOCK (circadian locomotor output cycles kaput):BMAL1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1) heterodimer enhances promoter activity of clock genes, and DEC1 (BHLHE40/STRA13/SHARP-2) represses CLOCK/BMAL1-enhanced promoter activity through competition for binding to the clock element, CACGTG E-box. However, the molecular mechanisms by which this system regulates blood pressure remain unclear.
View Article and Find Full Text PDFObesity is a major public health problem in developed countries resulting from increased food intake and decreased energy consumption and usually associated with abnormal lipid metabolism. Here, we show that DEC1, a basic helix-loop-helix transcription factor, plays an important role in the regulation of lipid consumption in mouse brown adipose tissue (BAT), which is the major site of thermogenesis. Homozygous Dec1 deletion attenuated high-fat-diet-induced obesity, adipocyte hypertrophy, fat volume and hepatic steatosis.
View Article and Find Full Text PDFBackground: High glucose (HG) induces production of transforming growth factor-beta1 (TGF-β1), but the mechanism remains elusive. The aim of this study was to determine the gene(s) involved in HG-induced TGF-β1 production in human peritoneal mesothelial cells (HPMCs).
Methods: Microarray analysis was performed following a 3-h preincubation of HPMCs in 4 or 0.
We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2--showed the same circadian phase.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent adult stem cells that have regenerative capability and exert paracrine actions on damaged tissues. Since peritoneal fibrosis is a serious complication of peritoneal dialysis, we tested whether MSCs suppress this using a chlorhexidine gluconate model in rats. Although MSCs isolated from green fluorescent protein-positive rats were detected for only 3 days following their injection, immunohistochemical staining showed that MSCs suppressed the expression of mesenchymal cells, their effects on the deposition of extracellular matrix proteins, and the infiltration of macrophages for 14 days.
View Article and Find Full Text PDFSeveral cis-acting elements play critical roles in maintaining circadian expression of clock and clock-controlled genes. Using in silico analysis, we identified 10 sequence motifs that are correlated with the circadian phases of gene expression in the cartilage. One of these motifs, an E-box-like clock-related element (EL-box; GGCACGAGGC), can mediate BMAL1/CLOCK-induced transcription, which is typically regulated through an E-box or E'-box.
View Article and Find Full Text PDFDEC1 and DEC2, members of the basic helix-loop-helix superfamily, are involved in various biological phenomena including clock systems, cell differentiation and metabolism. In clock systems, Dec1 and Dec2 expression are up-regulated by the CLOCK:BMAL1 heterodimer via E-box (CACGTG), exhibiting a circadian rhythm in the suprachiasmatic nucleus (SCN), the central circadian pacemaker and other peripheral tissues. In this study, using assays of luciferase reporters, electrophoretic mobility shift and chromatin immunoprecipitation, we identified novel nuclear receptor response elements, ROR response elements (RORE), in Dec1 and Dec2 promoters.
View Article and Find Full Text PDFDEC1 (BHLHB2/Stra13/Sharp2)-a basic helix-loop-helix transcription factor-is known to be involved in various biological phenomena including clock systems and metabolism. In the clock systems, Dec1 expression is dominantly up-regulated by CLOCK : BMAL1 heterodimer, and it exhibits circadian rhythm in the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and other peripheral tissues. Recent studies have shown that the strong circadian rhythmicity of Dec1 in the SCN was abolished by Clock mutation, whereas that in the liver was affected, but not abolished, by Clock mutation.
View Article and Find Full Text PDFDEC1 suppresses CLOCK/BMAL1-enhanced promoter activity, but its role in the circadian system of mammals remains unclear. Here we examined the effect of Dec1 overexpression or deficiency on circadian gene expression triggered with 50% serum. Overexpression of Dec1 delayed the phase of clock genes such as Dec1, Dec2, Per1, and Dbp that contain E boxes in their regulatory regions, whereas it had little effect on the circadian phase of Per2 and Cry1 carrying CACGTT E' boxes.
View Article and Find Full Text PDFTo elucidate the food-entrainable oscillatory mechanism of peripheral clock systems, we examined the effect of fasting on circadian expression of clock genes including Dec1 and Dec2 in mice. Withholding of food for 2 days had these effects: the expression level of Dec1 mRNA decreased in all tissues examined, although Per1 mRNA level markedly increased; Per2 expression was reduced in the liver and heart only 42-46 h after the start of fasting; and expression profiles of Dec2 and Bmal1 were altered only in the heart and in the liver, respectively, whereas Rev-erbalpha mRNA levels did not change significantly. Re-feeding after 36-h starvation erased, at least in part, the effect of fasting on Dec1, Dec2, Per1, Per2, and Bmal1 within several hours, and restriction feeding shifted the phase of expression profiles of all examined clock genes including Dec1 and Dec2.
View Article and Find Full Text PDFCircadian rhythms in cartilage have been reported repeatedly. However, previous studies used histological analysis or radioisotope-labeled precursors for DNA, collagen and proteoglycan synthesis, and thus it is difficult precisely to evaluate such studies on circadian rhythms in chondrocytes. On the other hand, circadian rhythms in plasma levels of several hormones, which play crucial roles in cartilage metabolism, proved to be significant both in human and animal models.
View Article and Find Full Text PDFThe basic helix-loop-helix transcription factor DEC1 is expressed in a circadian manner in the suprachiasmatic nucleus where it seems to play a role in regulating the mammalian circadian rhythm by suppressing the CLOCK/BMAL1-activated promoter. The interaction of DEC1 with BMAL1 has been suggested as one of the molecular mechanisms of the suppression [Honma, S., Kawamoto, T.
View Article and Find Full Text PDF