Biochem Biophys Res Commun
August 2022
Although modulation of claudin-1-based tight junction (TJ) in stratum granulosum is an option for transdermal absorption of drugs, granular permeation enhancers have never been developed. We previously found that homoharringtonine (HHT), a natural alkanoid, weakened intestinal epithelial barrier with changing expression and cellular localization of TJ components such as claudin-1 and claudin-4. In the present study, we investigated whether HHT is an epidermal granular permeation enhancer.
View Article and Find Full Text PDFOccludin (OCLN) is a tetraspan membrane component of epithelial tight junctions and a known receptor for hepatitis C virus (HCV). Previously, we established functional monoclonal antibodies (mAbs) that bind to each extracellular loop of OCLN and showed their ability to prevent in vitro and in vivo HCV infection. In this study, we converted these mAbs to corresponding monovalent antigen-binding fragments (Fabs) and single-chain variable fragment (scFv) antibodies.
View Article and Find Full Text PDFOccludin (OCLN), an integral tetra-spanning plasma membrane protein, is a host entry factor essential for hepatitis C virus (HCV) infection, making it a promising host-targeting molecule for HCV therapeutic intervention. We previously generated rat anti-OCLN monoclonal antibodies (mAbs) that strongly prevented HCV infection in vitro and in vivo. In the present study, we attempted to improve the druggability of the extracellular loop domain-recognizing anti-OCLN mAbs, namely clones 1-3 and 37-5, using genetic engineering.
View Article and Find Full Text PDFThis review reflects back over almost 40 years of the author's basic research conducted at Graduate School of Pharmaceutical Sciences, Osaka University, Japan. After performing postdoctoral research in USA, the author became a research associate at Prof. Yoshiharu Miura's lab and started research on Biochemical Engineering in 1984.
View Article and Find Full Text PDFClaudin (CLDN) proteins, a tetra-transmembrane family containing over 20 members, have been identified as key structural and functional components of intercellular seals, tight junctions (TJs). CLDNs are involved in the barrier and fence functions of TJs. Loosening the TJ barrier is one strategy for increasing drug absorption and delivery to the brain.
View Article and Find Full Text PDFThe production of antibodies against the extracellular regions (ECR) of multispanning membrane proteins is notoriously difficult because of the low productivity and immunogenicity of membrane proteins due to their complex structure and highly conserved sequences among species. Here, we introduce a new method to generate ECR-binding antibodies utilizing engineered liposomal immunogen prepared using a wheat cell-free protein synthesis system. We used claudin-5 (CLDN-5) as the target antigen, which is a notoriously difficult to produce and poorly immunogenic membrane protein with two highly conserved extracellular loops.
View Article and Find Full Text PDFWithin the field of RNA therapeutics, antisense oligonucleotide-based therapeutics are a potentially powerful means of treating intractable diseases. However, if these therapeutics are used for the treatment of neurological disorders, safe yet efficient methods of delivering antisense oligonucleotides across the blood-brain barrier to the central nervous system must be developed. Here, we examined the use of angubindin-1, a binder to the tricellular tight junction, to modulate paracellular transport between brain microvascular endothelial cells in the blood-brain barrier for the delivery of antisense oligonucleotides to the central nervous system.
View Article and Find Full Text PDFClaudin-2 (CLDN-2), a pore-forming tight junction protein with a tetra-transmembrane domain, is involved in carcinogenesis and the metastasis of some cancers. Although CLDN-2 is highly expressed in the tight junctions of the liver and kidney, whether CLDN-2 is a safe target for cancer therapy remains unknown. We recently generated a rat monoclonal antibody (mAb, clone 1A2) that recognizes the extracellular domains of human and mouse CLDN-2.
View Article and Find Full Text PDFVaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia.
View Article and Find Full Text PDFHepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening.
View Article and Find Full Text PDFLentinula edodes mycelia solid culture extract (MSCE) is used as a medical food ingredient and provides beneficial effects to patients with cancer and chronic type C hepatitis. Low molecular weight lignin (LM-lignin), which is an active component of MSCE, exhibits hepatoprotective, antitumor, antiviral, and immunomodulatory effects. In this study, we investigated the effect of LM-lignin/lignosulfonic acid on intestinal barrier function.
View Article and Find Full Text PDFClaudins are key functional and structural components of tight junctions (TJs) in epithelial cell sheets. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds to claudin-4 and reversibly modulates intestinal TJ seals, thereby enhancing paracellular transport of solutes. However, the use of C-CPE as an absorption enhancer is limited by the molecule's immunogenicity and manufacturing cost.
View Article and Find Full Text PDFDisruption of the gastrointestinal epithelial barrier is a hallmark of chronic inflammatory bowel diseases (IBDs). The transmembrane protein claudin 2 (CLDN2) is a component of epithelial tight junctions (TJs). In the intestines of patients with IBDs, the expression of the pore-forming TJ protein CLDN2 is upregulated.
View Article and Find Full Text PDFA current bottleneck in the development of central nervous system (CNS) drugs is the lack of drug delivery systems targeting the CNS. The intercellular space between endothelial cells of the blood-brain barrier (BBB) is sealed by complex protein-based structures called tight junctions (TJs). Claudin-5 (CLDN-5), a tetra-transmembrane protein is a key component of the TJ seal that prevents the paracellular diffusion of drugs into the CNS.
View Article and Find Full Text PDFA limiting barrier for mucosal absorption of drugs is the tight junction (TJ). TJs exist between two adjacent cells (bicellular TJ, bTJ) and at the sites where three cells meet (tricellular TJ, tTJ). We present a novel approach which employs a physiologically regulated pathway for the passage of large molecules through the tTJ.
View Article and Find Full Text PDFThe 27-member family of tetraspan membrane proteins known as claudins (CLDNs) is a major component of tight junctions. A series of studies elucidating the relationship between CLDNs and various pathological conditions has provided new insights into drug development. For instance, CLDN-1 may be a potent target for epidermal absorption of drugs and for treating hepatitis C virus (HCV) infection.
View Article and Find Full Text PDFBackground/aims: Although proinflammatory cytokine-induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α.
View Article and Find Full Text PDFLipid A comprises the active region of lipopolysaccharide (LPS), and its phosphate group is required for LPS activities. Additionally, it is essential for effects of inhibitors of LPS-induced coagulation activity in limulus amebocyte lysate (LAL) tests. Lipid A has phosphorylated glucosamine residues, which are structurally similar to glucose 1-phosphate (G1P) and glucose 6-phosphate (G6P).
View Article and Find Full Text PDFWhen considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles.
View Article and Find Full Text PDFClaudin-4 (CLDN-4), a tight-junction protein, is overexpressed in various malignant tumors, including gastric, colorectal, pancreatic, and breast cancers. However, CLDN-4 is also expressed in normal tissues, including the liver, pancreas, kidney, and small intestine. Whether CLDN-4 is an effective and safe target for cancer therapy has been unclear owing to the lack of a binder with both CLDN-4 specificity and cross-reactivity to human and murine cells.
View Article and Find Full Text PDFGiven that most malignant tumors are derived from epithelium, developing a strategy for treatment of epithelium-derived cancers (i.e., carcinomas) is a pivotal issue in cancer therapy.
View Article and Find Full Text PDFClaudins (CLDNs) are a 27-member family of tetra-transmembrane proteins that have pivotal roles in maintaining cellular polarity and sealing the spaces between adjacent cells. Deregulation of their functions is often associated with pathological conditions, including carcinogenesis and inflammation. Some CLDNs are co-receptors for hepatitis C virus.
View Article and Find Full Text PDFClaudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2.
View Article and Find Full Text PDFIt is well known that occludin (OCLN) is involved in hepatitis C virus (HCV) entry into hepatocytes, but there has been no conclusive evidence that OCLN is essential for HCV infection. In this study, we first established an OCLN-knockout cell line derived from human hepatic Huh7.5.
View Article and Find Full Text PDF