Publications by authors named "Kiyohito Nagai"

Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28).

View Article and Find Full Text PDF

Exosomes, a subset of small extracellular vesicles, carry various nucleic acids, proteins, lipids, amino acids and metabolites. They function as a mode of intercellular communication and molecular transfer. Exosome cargo molecules, including small non-coding RNAs (sncRNAs), are involved in the immune response in various organisms.

View Article and Find Full Text PDF

Several species of harmful algae form blooms that are detrimental to aquatic organisms worldwide with severe economic loss to several industries. The cosmopolitan ichthyotoxic dinoflagellates and raphidophytes Karenia spp., Chattonella spp.

View Article and Find Full Text PDF

Molluscan shells are organo-mineral composites, in which the dominant calcium carbonate is intimately associated with an organic matrix comprised mainly of proteins and polysaccharides. However, whether the various shell matrix proteins (SMPs) date to the origin of hard skeletons in the Cambrian, or whether they represent later deployment through adaptive evolution, is still debated. In order to address this issue and to better understand the origins and evolution of biomineralization, phylogenetic analyses have been performed on the three SMP families, Von Willebrand factor type A (VWA) and chitin-binding domain-containing protein (VWA-CB dcp), chitobiase, and carbonic anhydrase (CA), which exist in both larval and adult shell proteomes in the bivalves, Crassostrea gigas and Pinctada fucata.

View Article and Find Full Text PDF

Mollusks have a wide variety of body plans, which develop through conserved early embryogenesis, namely spiral embryonic development and trochophore larvae. Although the comparative study of mollusks has attracted the interest of evolutionary developmental biology researchers, less attention has been paid to bivalves. In this review, we focused on the evolutionary process from single-shell ancestors to bivalves, which possess bilaterally separated shells.

View Article and Find Full Text PDF

The gold and cream colors of cultured Akoya pearls, as well as natural yellow nacre of pearl oyster shells, are thought to arise from intrinsic yellow pigments. While the isolation of the yellow pigments has been attempted using a large amount of gold pearls, the substance concerned is still unknown. We report here on the purification and characterization of yellow pigments from the nacre of Akoya pearl oyster shells.

View Article and Find Full Text PDF

The biological process of pearl formation is an ongoing research topic, and a number of genes associated with this process have been identified. However, the involvement of microRNAs (miRNAs) in biomineralization in the pearl oyster, , is not well understood. In order to investigate the divergence and function of miRNAs in , we performed a transcriptome analysis of small RNA libraries prepared from adductor muscle, gill, ovary, and mantle tissues.

View Article and Find Full Text PDF

The nacreous layer of shells and pearls is composed of aragonite crystals arranged in an organic matrix. The organic matrix contains chitin and several proteins that regulate the formation of the nacreous layer. Owing to their strong interactions in the organic matrix, the current method for extraction of insoluble proteins from the pre-powdered nacreous layer involves heating to high temperatures in the presence of a detergent (e.

View Article and Find Full Text PDF

Background: The most critical step in the pearl formation during aquaculture is issued to the proliferation and differentiation of outer epithelial cells of mantle graft into pearl sac. This pearl sac secretes various matrix proteins to produce pearls by a complex physiological process which has not been well-understood yet. Here, we aimed to unravel the genes involved in the development of pearl sac and pearl, and the sequential expression patterns of different shell matrix proteins secreted from the pearl sac during pearl formation by pearl oyster Pinctada fucata using high-throughput transcriptome profiling.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) belong to a recently discovered class of small non-coding RNAs whose best-understood function is repressing transposable element activity. Most piRNA studies have been conducted on model organisms and little is known about piRNA expression and function in mollusks. We performed high-throughput sequencing of small RNAs extracted from the mantle, adductor muscle, gill, and ovary tissues of the pearl oyster, Pinctada fucata.

View Article and Find Full Text PDF
Article Synopsis
  • Molluscan shells are primarily made of calcium carbonate and contain organic components, such as proteins and polysaccharides, which help in shell formation and crystallization.
  • Researchers have identified 31 shell matrix proteins (SMPs) in larval shells of pearl oysters and 111 in Pacific oysters, revealing that larval SMPs differ significantly from those found in adults.
  • Despite the differences, both larval and adult SMPs share some conserved functional domains, which are essential for shell formation, indicating that molluscs have evolved specific SMP genes for each life stage after diverging from other related animal groups.
View Article and Find Full Text PDF

Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls.

View Article and Find Full Text PDF

Although a wide variety of proteins and genes possibly related to the shell formation in bivalve have been identified, their functions have been only partially approved. We have recently performed deep sequencing of expressed sequence tags (ESTs) from the pearl oyster Pinctada fucata using a next-generation sequencer, identifying a dozen of novel gene candidates which are possibly associated with the nacreous layer formation. Among the ESTs, we focused on three novel isoforms (N16-6, N16-7, and N19-2) of N16 and N19 families with reference to five known genes in the families and determined the full-length cDNA sequences of these isoforms.

View Article and Find Full Text PDF

The inimical effects of the ichthyotoxic harmful algal bloom (HAB)-forming raphidophytes Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua on the early-life stages of the Japanese pearl oyster Pinctada fucata martensii were studied. Fertilized eggs and developing embryos were not affected following exposure to the harmful raphidophytes; however, all three algal species severely affected trochophores and D-larvae, early-stage D-larvae, and late-stage pre-settling larvae. Exposure to C.

View Article and Find Full Text PDF

Introduction: Bivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P.

View Article and Find Full Text PDF

In our previous publication, we identified novel gene candidates involved in shell formation by EST analyses of the nacreous and prismatic layer-forming tissues in the pearl oyster Pinctada fucata. In the present study, 14 of those genes, including two known genes, were selected and further examined for their involvement in shell formation using the RNA interference. Molecular characterization based on the deduced amino acid sequences showed that seven of the novel genes encode secretory proteins.

View Article and Find Full Text PDF

During the 18th and 19th centuries, studies of how pearls are formed were conducted mainly in Europe. The subsequent pearl culturing experiments conducted worldwide in the early 20th century, however, failed to develop into a pearl industry. In Japan, however, Kokichi Mikimoto succeeded in culturing blister pearls in 1893 under the guidance of Kakichi Mitsukuri, a professor at Tokyo Imperial University (now the University of Tokyo) and the first director of the Misaki Marine Biological Station, Graduate School of Science, University of Tokyo.

View Article and Find Full Text PDF

The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ~1150-Mb genome at ~40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.

View Article and Find Full Text PDF

Recent researches revealed the regional preference of biomineralization gene transcription in the pearl oyster Pinctada fucata: it transcribed mainly the genes responsible for nacre secretion in mantle pallial, whereas the ones regulating calcite shells expressed in mantle edge. This study took use of this character and constructed the forward and reverse suppression subtractive hybridization (SSH) cDNA libraries. A total of 669 cDNA clones were sequenced and 360 expressed sequence tags (ESTs) greater than 100 bp were generated.

View Article and Find Full Text PDF

Background: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates.

Principal Findings: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P.

View Article and Find Full Text PDF

A cultured pearl is produced in a pearl sac which forms layers of cells differentiated from an allograft mantle. Previous investigations claimed that genomic DNAs from grafting tissues were persistent during pearl aquaculture. However, the specific living status of the genes regulating pearl formation has remained unknown.

View Article and Find Full Text PDF

We examined the effect of tributyltin (TBT) on reproduction of the pearl oyster (Pinctada fucata martensii). In a maternal exposure test, five female pearl oysters were exposed to TBT at measured concentrations of 0 (control), 0.092, or 0.

View Article and Find Full Text PDF

Granulocyte apoptosis and subsequent clearance by phagocytes are critical for the resolution of inflammation. However, no studies have addressed how the resolution proceeds in the inflammatory site. We studied the time course of neutrophil apoptosis and the following ingestion by mononuclear leukocytes in rat carrageenin-induced pleurisy, detecting DNA fragmentation by the deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) method, by acridine orange staining, and from the DNA ladder pattern on electrophoresis.

View Article and Find Full Text PDF