Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling.
View Article and Find Full Text PDFGlucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl) and streptozotocin (STZ) to induce diabetes.
View Article and Find Full Text PDFMuscle atrophy is the cause and consequence of obesity. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum (ER) stress and insulin resistance in the liver and adipose tissues. However, obesity-associated regulation of proteasome function and its role in the skeletal muscles remains underinvestigated.
View Article and Find Full Text PDFThe quality of skeletal muscle is maintained by a balance between protein biosynthesis and degradation. Disruption in this balance results in sarcopenia. However, its underlying mechanisms remain underinvestigated.
View Article and Find Full Text PDFUbiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes.
View Article and Find Full Text PDFCyclosporine A (CsA) is an immunosuppressant applied worldwide for preventing graft rejection and autoimmune diseases. However, CsA elevates oxidative stress, which can lead to liver injuries. The present study aimed to clarify the mechanisms underlying the CsA-mediated oxidative stress.
View Article and Find Full Text PDFRetinoic acid-inducible gene (RIG)-I is an essential innate immune sensor that recognises pathogen RNAs and induces interferon (IFN) production. However, little is known about how host proteins regulate RIG-I activation. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine and ligand of the MET receptor tyrosine kinase is an antiviral regulator that promotes the RIG-I-mediated innate immune response.
View Article and Find Full Text PDFSelenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes.
View Article and Find Full Text PDFReactive oxygen species (ROS) activate uncoupler protein 1 (UCP1) in brown adipose tissue (BAT) under physiological cold exposure and noradrenaline (NA) stimulation to increase thermogenesis. However, the endogenous regulator of ROS in activated BAT and its role in pathological conditions remain unclear. We show that serum levels of selenoprotein P (SeP; encoded by SELENOP) negatively correlate with BAT activity in humans.
View Article and Find Full Text PDFSelenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop.
View Article and Find Full Text PDFSelenoprotein P (SELENOP) is a major selenium (Se)-containing protein (selenoprotein) in human plasma that is mainly synthesized in the liver. SELENOP transports Se to the cells, while SELENOP synthesized in peripheral tissues is incorporated in a paracrine/autocrine manner to maintain the levels of cellular selenoproteins, called the SELENOP cycle. Pancreatic β cells, responsible for the synthesis and secretion of insulin, are known to express SELENOP.
View Article and Find Full Text PDFAim: Selenoprotein P (SeP, encoded by SELENOP in humans) is a hepatokine that causes insulin resistance in the liver and skeletal muscle. It was found that polyunsaturated fatty acid eicosapentaenoic acid (EPA) downregulates Selenop expression by inactivating SREBP-1c. The present study aimed to examine the effect of EPA for 12 weeks on circulating SeP levels and insulin sensitivity in humans with type 2 diabetes.
View Article and Find Full Text PDFOsteosarcoma is the most frequent type of primary bone tumor in children and adolescents, thus care for patients with malignant osteosarcoma is strongly required. The roles of small extracellular vesicles (SEVs) in enhancing metastases have been demonstrated in multiple tumors, but they are still poorly understood in osteosarcoma. Hence, this study investigated the effects of SEVs on progression and the tumor microenvironment in mice and patients.
View Article and Find Full Text PDFSelenoprotein P is a hepatokine with antioxidative properties that eliminate a physiologic burst of reactive oxygen species required for intracellular signal transduction. Serum levels of selenoprotein P are elevated during aging and in people with type 2 diabetes, non-alcoholic fatty liver disease, and hepatitis C. However, how serum levels of full-length selenoprotein P are regulated largely remains unknown, especially in the general population.
View Article and Find Full Text PDFIt remains unclear how hepatic steatosis links to inflammation. Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that senses fat in the liver and is upregulated prior to weight gain. The aim of this study was to investigate the significance of LECT2 in the development of nonalcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFIn recent years, the atomic force microscope has proven to be a powerful tool for studying biological systems, mainly for its capability to measure in liquids with nanoscale resolution. Measuring tissues, cells or proteins in their physiological conditions gives us access to valuable information about their real 'in vivo' structure, dynamics and functionality which could then fuel disruptive medical and biological applications. The main problem faced by the atomic force microscope when working in liquid environments is the difficulty to generate clear cantilever resonance spectra, essential for stable operation and for high resolution imaging.
View Article and Find Full Text PDFLeukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that causes skeletal muscle insulin resistance. The circulating levels of LECT2 are a possible biomarker that can predict weight cycling because they reflect liver fat and precede the onset of weight loss or gain. Herein, to clarify the dynamics of this rapid change in serum LECT2 levels, we investigated the in vivo kinetics of LECT2, including its plasma half-life and tissue distribution, by injecting I-labelled LECT2 into ICR mice and radioactivity tracing.
View Article and Find Full Text PDFPatients infected with hepatitis C virus (HCV) have an increased risk of developing type 2 diabetes. HCV infection is linked to various liver abnormalities, potentially contributing to this association. We show that HCV infection increases the levels of hepatic selenoprotein P (SeP) mRNA (SEPP1 mRNA) and serum SeP, a hepatokine linked to insulin resistance.
View Article and Find Full Text PDFX-linked hypophosphatemic rickets (XLH) is the most common form of hereditary rickets. Here, we present a case of XLH associated with a novel mutation in a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (). PCR-direct sequencing revealed a novel mutation in exon 22, NM_000444.
View Article and Find Full Text PDFA hepatokine is a collective term for liver-derived secretory factors whose previously-unrecognized functions have been recently elucidated. We have rediscovered selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2) as hepatokines that are involved in the development of insulin resistance and hyperglycemia. The aim of this study was to determine whether and, if so, how oral glucose loading alters the two hepatokines in humans.
View Article and Find Full Text PDFAims/introduction: Previous studies have shown that an organism's nutritional status changes the protein levels of insulin receptor substrate 1 (IRS-1) in a tissue-specific manner. Although the mechanisms underlying the regulation of IRS-1 in the nutrient-rich conditions associated with diabetes and insulin resistance have been well studied, those under nutrient-poor conditions remain unknown. The aim of the present study was to investigate how IRS-1 protein levels change depending on the nutritional status of 3T3-L1 preadipocytes.
View Article and Find Full Text PDFSelenoprotein P (encoded by in humans, in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by in rat) in H4IIEC3 hepatocytes.
View Article and Find Full Text PDFExercise has numerous health-promoting effects in humans; however, individual responsiveness to exercise with regard to endurance or metabolic health differs markedly. This 'exercise resistance' is considered to be congenital, with no evident acquired causative factors. Here we show that the anti-oxidative hepatokine selenoprotein P (SeP) causes exercise resistance through its muscle receptor low-density lipoprotein receptor-related protein 1 (LRP1).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2016