Industrial microwave-heating systems are pivotal in various sectors, including food processing and materials manufacturing, where precise temperature control and safety are critical. Conventional systems often struggle with uneven heat distribution and high fire risks due to the intrinsic properties of microwave heating. In this work, a fiber-optic-sensor-assisted monitoring system is presented to tackle the pressing challenges associated with uneven heating and fire hazards in industrial microwave systems.
View Article and Find Full Text PDFThis work presents a detailed review of the development of distributed acoustic sensors (DAS) and their newest scientific applications. It covers most areas of human activities, such as the engineering, material, and humanitarian sciences, geophysics, culture, biology, and applied mechanics. It also provides the theoretical basis for most well-known DAS techniques and unveils the features that characterize each particular group of applications.
View Article and Find Full Text PDFInstrumentation techniques, implementation and installation methods are major concerns in today's distributed and quasi-distributed monitoring applications using fiber optic sensors. Although many successful traffic monitoring experiments have been reported using Fiber Bragg Gratings (FBGs), there has been no standardized solution proposed so far to have FBG seamlessly implemented in roads. In this work, we investigate a mobile platform including FBG sensors that can be positioned on roads for the purpose of vehicle speed measurements.
View Article and Find Full Text PDFType-I fiber Bragg gratings photo-inscribed in hydrogen-loaded B/Ge co-doped silica single-mode optical fibers have been regenerated efficiently at 450°C, which is the lowest temperature reported so far. The mechanical strength of the annealed fiber is preserved while ensuring temperature sensing of the regenerated gratings up to 900°C. Unlike low temperature cycles (≤600°C), an annealing process at higher temperatures revealed faster regeneration for strong gratings.
View Article and Find Full Text PDFA new method for monitoring the nonlinearities perturbing the optical frequency sweep in high speed tunable laser sources is presented. The swept-frequency monitoring system comprises a Mach-Zehnder interferometer and simple signal processing steps. It has been implemented in a coherent optical frequency domain reflectometer which allowed to drastically reduce the effects of nonlinear sweep, resulting to a spatial resolution enhancement of 30 times.
View Article and Find Full Text PDF