Developing X-ray and γ-ray detectors with stable operation at ambient temperature and high energy resolution is an open challenge. Here, we present an approach to search for new detector materials, combining binary photodetector compounds. More specifically, we explore quaternary TlPbBr I compositions, relying on materials synergy between TlBr, TlI, and PbI photodetectors.
View Article and Find Full Text PDFA series of new push-pull chromophores based on a combined cyclopenta[c]thiophene-4,6-dione (ThDione) acceptor, N,N-dimethylaniline, N-piperidinylthiophene or ferrocene donors, and ethylene or buta-1,3-dienylene π-linkers has been designed and synthesized. Utilizing one or two ThDione acceptors afforded linear or branched push-pull molecules. Experimental and theoretical study of their fundamental properties revealed thermal robustness up to 260 °C, a electrochemical/optical HOMO-LUMO gap that is tunable within the range of 1.
View Article and Find Full Text PDFElectron beam induced effects on defect engineering and structural, morphological and optical properties of Ga doped ZnO (GaZnO) nanostructures for improved ultrafast nonlinear optical properties are presented. A microstructural analysis was carried out based on the Scherrer, Williamson-Hall, and size-strain models. All three models reveal a peak broadening effect upon electron beam irradiation (EBI) and the crystallite size of the films shows a decrease of 30% compared to unirradiated nanostructures.
View Article and Find Full Text PDFWe explore influence of Mg alloying effect on electronic band structure dispersion and thermoelectric properties of tin chalcogenide materials. Based on density functional theory (DFT) within a framework of full potential linearized augmented plane wave method (FP-LAPW), we evaluate the energy band structure and optical properties of MgSnSe (x = 6%, 12% and 18%) materials. Moreover, we extend our calculations to simulate the electrical transport properties using Boltzmann transport theory.
View Article and Find Full Text PDFThe Mn single-molecule magnets (SMMs) could be attached to the surface of spherical silica for the first time with a high probability. This allowed separation of the individual molecular magnets and direct microscopic observation of the SMMs. We described in detail how to fabricate such a composite material.
View Article and Find Full Text PDFFourteen new D-π-A push-pull chromophores based on two isomeric thienothiophene donors and seven acceptors of various electronic natures have been designed and conveniently synthesized. In contrast to known thienothiophene push-pull molecules, the prepared small chromophores proved to be organic materials with easily tunable thermal, electrochemical and (non)linear optical properties. It has also been shown that small structural variation may result in significantly improved/varied fundamental properties.
View Article and Find Full Text PDFNine new quadrupolar chromophores based on diketopyrrolopyrrole were designed and prepared by cross-coupling reactions. The property tuning has been achieved by structural variation of the peripheral substituents (donor) and enlargement of the π-system. Fundamental properties of target molecules were studied by differential scanning calorimetry, electrochemistry, and absorption and emission spectra.
View Article and Find Full Text PDFA general method for determining the global maximum of the linear electro-optic effect in crystalline materials based on the construction and analysis of extreme surfaces obtained as a result of the optimization procedure is proposed. The electrically induced optical path length changes for ordinary and extraordinary waves as well as the optical path difference for orthogonally polarized waves were used as the objective functions in the optimization. The objective functions were determined for units of the electric field and crystal thickness in the light pass direction.
View Article and Find Full Text PDFThe article is about a novel material for application in optoelectronic devices: mesoporous silica in the form of thin films with vertically aligned channels containing anchored propyl-copper-phosphonate functional groups. We described a synthesis route and carried out characterization of the structure to obtain its nonlinear optical (NLO) properties (second and third order harmonic generation). A quasi phase transition was found in the material resulting from modification of the functional group content.
View Article and Find Full Text PDFDensity functional theory (DFT) calculations within the concept of the MBJ+U+SO (modified Becke-Johnson potential + U + spin orbit) approach were performed for a TlHgBr single crystal for the first time assuming weak noncentrosymmetry (space group P4nc). Excellent agreement was achieved between the calculated and experimental band-gap-energy magnitudes as well as the density of electronic states measured by the X-ray photoelectron spectroscopy method. It is a very principal result because usually the DFT calculations underestimate the energy-gap values.
View Article and Find Full Text PDFWe report here the synthesis of new N→Sn-coordinated stannaoxidoborates H[LSnB4O6R4] {L = [2,6-(Me2NCH2)C6H3](-) and R = Ph (6), 4-Br-Ph (7), 3,5-(CF3)2-Ph (8), and 4-CHO-Ph (9)} containing a nonsymmetric SnB4O6 unit. Compounds 6-9 represent new derivatives of the pentaborates [B5O6R4](-) in which the central boron is substituted by a tin atom. Compounds 6-9 were characterized by means of elemental analysis, electrospray ionization mass spectrometry, and NMR spectroscopy and in the case of 6-8 also by single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2015
An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB₂:Cr₂O₃ nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2015
The optimized conditions for the enhancement of the second harmonic generation in the composites of the orthorhombic δ-BiB3O6:Pr(3+) nanoparticles embedded in polyvinyl alcohol films and deposited on the AgGaGe2Se6, AgGaGe2.7Si0.3Se8 (90 mol.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2015
Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr(3+) energy levels, crystal field strength Dq, Racah parameters B and C) was performed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2015
During illumination of the MgB2:Cr2O3 films it was established substantial spectral shift of the infrared spectra in the vicinity of 20-50cm(-1). The excitations were performed by nanosecond Er:glass laser operating at 1.54μm and by microsecond 10.
View Article and Find Full Text PDFA series of novel X-shaped push-pull compounds based on benzene-1,2-dicarbonitrile has been designed, synthesized and further investigated by X-ray analysis, electrochemistry, absorption and emission spectra, SHG experiment and quantum-chemical calculations. The obtained data were compared with those for isolobal 5,6-disubstituted pyrazine-2,3-dicarbonitriles. Structure-property relationships were elucidated.
View Article and Find Full Text PDFA novel Tl3PbI5 crystal has been studied both experimentally and theoretically. Complex measurements of the X-ray photoelectron core-level and valence-band spectra for the pristine and Ar(+)-ion irradiated surfaces of a Tl3PbI5 single crystal grown by the Bridgman-Stockbarger method were performed in order to clarify their principal properties (charge carriers mobility, effective inter-band distances, effective absorption etc.) relevant for optoelectronic applications.
View Article and Find Full Text PDFDetailed first-principles calculations of the structural, electronic, and optical properties of solid solutions of the promising solar cell material CuAl(S(1-x)Se(x))2 over the whole range of Se concentration from x = 0 to x = 1 were performed. It was established that the calculated lattice parameters, band gap, and anisotropic refractive indices vary linearly with the Se concentration. The obtained linear dependences allow for reliable estimations of all these quantities for any value of x, which determines the solid solution composition.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2013
The quaternary chalcogenide crystal Cu2CdGeS4 was studied both experimentally and theoretically in the present paper. Investigations of polarized fundamental absorption spectra demonstrated a high sensitivity to external light illumination. The photoinduced changes were studied using a cw 532 nm green laser with energy density about 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2014
Three fluoro-substituted pyrazoloquinoline derivatives have been placed in polymer matrices: polycarbonate, poly(methyl methacrylate) and polystyrene. Absorption, excitation and time-resolved fluorescence spectra have been recorded and luminescence lifetime of the optically active composites has been determined. Influence of the dielectric environment the optical properties of the chromophores are discussed.
View Article and Find Full Text PDFThe single-crystal borate LiBaB9O15 was synthesized by a high-temperature solution reaction and structurally determined by the single-crystal X-ray diffraction technique. It crystallizes in the noncentrosymmetric space group R3c and features a three-dimensional ∞3[B9O15]3– anionic framework, with infinite channels in which the Li+ and Ba2+ cations are located. The linear optical properties were investigated experimentally in terms of the absorption spectrum, which reveals an optical gap of 5.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2013
The possibility to operate by optical spectra near the absorption edge gap was discovered for the AgGaGe3Se8:Cu semiconducting chalcogenide crystals under influence of microsecond CO2 laser with pulse energy 60 mJ operating at wavelength 10.6 μm. An occurrence of substantial photoinduced optical density was observed at wavelengths in the spectral range of 610-620 nm.
View Article and Find Full Text PDFThe linear and nonlinear optical properties of Ag2In2SiS6 and Ag2In2GeS6 are calculated so as to obtain further insight into the electronic properties. The influence of using different exchange correlation potentials and the effect of replacing Si by Ge on the geometry, chemical bonding, and on the optical properties are presented. There is notable increasing in the energy band gap when moving from LDA to GGA, EVGGA then to mBJ.
View Article and Find Full Text PDF