High-throughput sequencing (HTS) is becoming the new norm of diagnostics in plant quarantine settings. HTS can be used to detect, in theory, all pathogens present in any given sample. The technique's success depends on various factors, including methods for sample management/preparation and suitable bioinformatic analysis.
View Article and Find Full Text PDFAgricultural high throughput diagnostics need to be fast, accurate and have multiplexing capacity. Metagenomic sequencing is being widely evaluated for plant and animal diagnostics. Bioinformatic analysis of metagenomic sequence data has been a bottleneck for diagnostic analysis due to the size of the data files.
View Article and Find Full Text PDFE-probe Diagnostic for Nucleic acid Analysis (EDNA) is a bioinformatic tool originally developed to detect plant pathogens in metagenomic databases. However, enhancements made to EDNA increased its capacity to conduct hypothesis directed detection of specific gene targets present in transcriptomic databases. To target specific pathogenicity factors used by the pathogen to infect its host or other targets of interest, e-probes need to be developed for transcripts related to that function.
View Article and Find Full Text PDF