Publications by authors named "Kitty Cha"

High-quality graphene oxide (GO) with high crystallinity and electrical conductivity as well as in situ doped with nitrogen and sulfur is obtained via the electrochemical exfoliation of graphite. Furthermore, iron incorporated GO sheets show promising catalytic activity and stable methanol tolerance durability when used as electrocatalysts for the oxygen reduction reaction.

View Article and Find Full Text PDF

Successful implementation of molecular solution processing from a homogeneous and stable precursor would provide an alternative, robust approach to process multinary compounds compared with physical vapor deposition. Targeting deposition of chemically clear, high quality crystalline films requires specific molecular structure design and solvent selection. Hydrazine (N2H4) serves as a unique and powerful medium, particularly to incorporate selected metallic elements and chalcogens into a stable solution as metal chalcogenide complexes (MCC).

View Article and Find Full Text PDF

A novel C70 fullerene derivative was designed and synthesized by [4+2] cyclic addition reaction between indene derivative (methyl 1H-indene-3-carboxylate) and C70. The absorption and photoluminescence of H120 and its mixed films with different polymer donor materials were investigated, as well as its electrochemical property and electron mobility. It was found that H120 has 0.

View Article and Find Full Text PDF

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units.

View Article and Find Full Text PDF

Silver nanowire (AgNW) networks are promising candidates to replace indium-tin-oxide (ITO) as transparent conductors. However, complicated treatments are often required to fuse crossed AgNWs to achieve low resistance and good substrate adhesion. In this work, we demonstrate a simple and effective solution method to achieve highly conductive AgNW composite films with excellent optical transparency and mechanical properties.

View Article and Find Full Text PDF

Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO).

View Article and Find Full Text PDF

The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e.

View Article and Find Full Text PDF