Tumor progression is regulated by a complex interplay between neoplastic cells and the tumor microenvironment. Tumor-associated macrophages have been shown to promote breast cancer progression in advanced disease and more recently, in early stage cancers. However, little is known about the macrophage-derived factors that promote tumor progression in early stage lesions.
View Article and Find Full Text PDFWhole Mammary Gland Transplantation involves transplanting an excised mammary gland into another, more suitable host. This method can be used to extend the life of a mammary gland past the mouse's life span by transplanting the mammary gland of an older mouse into a young healthy mouse. As you can see in the video below (Video 1), by attaching it to the abdomen of the mouse, the gland will receive a steady blood supply and both epithelial and stromal cells will remain viable for up to one year.
View Article and Find Full Text PDFBreast cancer initiation, progression and metastasis rely on a complex interplay between tumor cells and their surrounding microenvironment. Infiltrating immune cells, including macrophages, promote mammary tumor progression and metastasis; however, less is known about the role of macrophages in early stage lesions. In this study, we utilized a transplantable p53-null model of early progression to characterize the immune cell components of early stage lesions.
View Article and Find Full Text PDFThe mouse pituitary isograft is a technique developed to administer persistent hormone stimulation, thereby increasing cellular proliferation in the mammary tissue ( Christov , 1993 ). The pituitary isograft procedure was first described in 'Induction of Mammary Cancer in Mice without the Mammary Tumor Agent by Isografts of Hypophyses' by O. Mühlbock and L.
View Article and Find Full Text PDFMechanisms regulating the transition of mammary epithelial cells (MECs) to mammary stem cells (MaSCs) and to tumor-initiating cells (TICs) have not been entirely elucidated. The p53 family member, p63, is critical for mammary gland development and contains transactivation domain isoforms, which have tumor-suppressive activities, and the ΔN isoforms, which act as oncogenes. In the clinic, p63 is often used as a diagnostic marker, and further analysis of the function of TAp63 in the mammary gland is critical for improved diagnosis and patient care.
View Article and Find Full Text PDFThe MIND method involves intraductal injection of patient derived ductal carcinoma in situ (DCIS) cells and DCIS cell lines (MCF10DCIS.COM and SUM225) inside the mouse mammary ducts [Video 1 and Figure 1 in Behbod (2009)]. This method mimics the normal environment of DCIS and facilitates study of the natural progression of human DCIS, .
View Article and Find Full Text PDFMammary gland reconstitution experiments, as well as lineage tracing experiments, have provided evidence for the existence of adult mammary stem cells (MaSCs). In addition, cell sorting techniques for specific cell surface markers (CD24(+)CD29(H)CD49f(H)Sca1(-)) have been used to prospectively isolate MaSC-enriched populations. Although these markers enrich for cell subpopulations that harbor MaSCs, they do not identify regenerative stem cells uniquely.
View Article and Find Full Text PDFIn pursuit of effective therapeutic agents for the estrogen receptor (ER)-negative breast cancer, we previously showed that bexarotene reduced mammary tumor development by 75% in ErbB2 mice. To further improve the effectiveness of breast cancer prevention, we have now investigated the effects of a combinatorial therapy consisting of two cancer preventive drugs. On the basis of the hypothesis, rexinoid LG100268 plus tamoxifen would more effectively prevent the development of both ER-positive and ER-negative breast cancer.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
June 2012
Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive breast cancer. Although there is extensive information on the cellular and molecular changes in DCIS, there is limited ability to functionally test. The critical changes in premalignant progression.
View Article and Find Full Text PDFIntroduction: Utilizing single-cell cloning of the COMMA-D cell line engineered to express β-galactosidase (CDβ) cell line, which exhibits normal in vivo morphogenesis, distinct multipotent, ductal-limited, alveolar-limited and luminal-restricted progenitors, have been isolated and characterized.
Methods: A single-cell suspension of CDβ cells was stained using Hoechst dye 33342, followed by analysis and sorting. Cells that effluxed the dye appeared on the left side of a FACS analysis panel and were referred to as side population (SP) cells.
Introduction: During selective segregation of DNA, a cell asymmetrically divides and retains its template DNA. Asymmetric division yields daughter cells whose genome reflects that of the parents', simultaneously protecting the parental cell from genetic errors that may occur during DNA replication. We hypothesized that long-lived epithelial cells are present in immortal, premalignant cell populations, undergo asymmetric division, retain their template DNA strands, and cycle both during allometric growth and during pregnancy.
View Article and Find Full Text PDFMutation and loss of function in p53 are common features among human breast cancers. Here we use BALB/c-Trp53+/- mice as a model to examine the sequence of events leading to mammary tumors. Mammary gland proliferation rates were similar in both BALB/c-Trp53+/- mice and wild-type controls.
View Article and Find Full Text PDFIntroduction: Human models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied.
View Article and Find Full Text PDFGenetically engineered mouse cancer models are among the most useful tools for testing the in vivo effectiveness of the various chemopreventive approaches. The p53-null mouse model of mammary carcinogenesis was previously characterized by us at the cellular, molecular, and pathologic levels. In a companion article, Medina et al.
View Article and Find Full Text PDFThe chemopreventive effects of three agents, rexinoid bexarotene, tyrosine kinase inhibitor gefitinib, and celecoxib, were tested on mammary tumor development arising in p53-null mammary epithelium. The rexinoid bexarotene was the most efficacious inhibitor as it reduced mammary tumor development by 75% in virgin mice and significantly delayed mean tumor development by 98 days in hormone-stimulated mice. The tyrosine kinase inhibitor gefitinib reduced mammary tumor incidence by 50% in virgin mice but did not significantly delay mean tumor latency in hormone-stimulated mice.
View Article and Find Full Text PDFBackground: The rexinoid bexarotene (LGD1069, Targretin) is a highly selective retinoid x receptor (RXR) agonist that inhibits the growth of pre-malignant and malignant breast cells. Bexarotene was shown to suppress the development of breast cancer in transgenic mice models without side effects. The chemopreventive effects of bexarotene are due to transcriptional modulation of cell proliferation, differentiation and apoptosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
Separase is an endopeptidase that separates sister chromatids by cleaving cohesin Rad21 during the metaphase-to-anaphase transition. Conditional expression of Separase in tetracycline-inducible diploid FSK3 mouse mammary epithelial cells with both p53 WT and mutant (Ser-233-234) alleles of unknown physiological significance develops aneuploidy within 5 days of Separase induction in vitro. Overexpression of Separase induces premature separation of chromatids, lagging chromosomes, and anaphase bridges.
View Article and Find Full Text PDFUsing a syngeneic p53-null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified, by limiting dilution transplantation and in vitro mammosphere assay, a Lin(-)CD29(H)CD24(H) subpopulation of tumor-initiating cells. Upon subsequent transplantation, this subpopulation generated heterogeneous tumors that displayed properties similar to the primary tumor. Analysis of biomarkers suggests the Lin(-)CD29(H)CD24(H) subpopulation may have arisen from a bipotent mammary progenitor.
View Article and Find Full Text PDFErnst Schering Found Symp Proc
July 2008
Estrogen and progesterone play a critical role in normal and neoplastic development of the mammary gland. A long duration of estrogen and progesterone exposure is associated with increased breast cancer risk, and a short duration of the same doses of these hormones is associated with a reduced breast cancer risk. The protective effects of estrogen and progesterone have been extensively studied in animal models.
View Article and Find Full Text PDFThe use of agents to prevent the onset of and/or the progression to breast cancer has the potential to lower breast cancer risk. We have previously shown that the tumor-suppressor gene p53 is a potential mediator of hormone (estrogen/progesterone)-induced protection against chemical carcinogen-induced mammary carcinogenesis in animal models. Here, we show for the first time a breast cancer-protective effect of chloroquine in an animal model.
View Article and Find Full Text PDFThe tumor suppressor p53 is important for inhibiting the development of breast carcinomas. However, little is known about the effects of increased p53 activity on mammary gland development. Therefore, the effect of p53 dosage on mammary gland development was examined by utilizing the p53+/m mouse, a p53 mutant which exhibits increased wild-type p53 activity, increased tumor resistance, a shortened longevity, and a variety of accelerated aging phenotypes.
View Article and Find Full Text PDFSerial analysis of gene expression from aggressive mammary tumors derived from transplantable p53 null mouse mammary outgrowth lines revealed significant up-regulation of Tfdp1 (transcription factor Dp1), Lamp1 (lysosomal membrane glycoprotein 1) and Gas6 (growth arrest specific 6) transcripts. All of these genes belong to the same linkage cluster, mapping to mouse chromosome band 8A1. BAC-array comparative genomic hybridization and fluorescence in situ hybridization analyses revealed genomic amplification at mouse region ch8A1.
View Article and Find Full Text PDFIntroduction: The experiments reported here address the question of whether a short-term hormone treatment can prevent mammary tumorigenesis in two different genetically engineered mouse models.
Methods: Two mouse models, the p53-null mammary epithelial transplant and the c-neu mouse, were exposed to estrogen and progesterone for 2 and 3 weeks, respectively, and followed for development of mammary tumors.
Results: In the p53-null mammary transplant model, a 2-week exposure to estrogen and progesterone during the immediate post-pubertal stage (2 to 4 weeks after transplantation) of mammary development decreased mammary tumorigenesis by 70 to 88%.
The inappropriate activation of one or more members of the ErbB family of receptor tyrosine kinases [ErbB-1 (EGFR), ErbB-2, ErbB-3, ErbB-4] has been linked with oncogenesis. ErbB-2 is frequently coexpressed with ErbB-3 in breast cancer cells and in the presence of the ligand heregulin (HRG) the ErbB-2/ErbB-3 receptors form a signaling heterodimer that can affect cell proliferation and apoptosis. The major goal of the present study was to determine whether endogenous HRG causes autocrine/paracrine activation of ErbB-2/ErbB-3 and contributes to the proliferation of mammary epithelial tumor cells.
View Article and Find Full Text PDFTamoxifen reduces the relative risk of breast cancer developing from specific premalignant lesions. Many breast cancers that arise after tamoxifen treatment are estrogen receptor-alpha (ER-alpha)-negative, although premalignant lesions such as atypical ductal hyperplasia are highly ER-alpha-positive. The p53 null mouse mammary epithelial transplant model is characterized by ER-alpha-positive premalignant lesions that give rise to both ER-alpha-positive and ER-alpha-negative tumors.
View Article and Find Full Text PDF