Publications by authors named "Kittipat Sopitthummakhun"

Background: There is an urgent need for the discovery of new anti-malarial drugs. Thus, it is essential to explore different potential new targets that are unique to the parasite or that are required for its viability in order to develop new interventions for treating the disease. Plasmodium serine hydroxymethyltransferase (SHMT), an enzyme in the dTMP synthesis cycle, is a potential target for such new drugs, but convenient methods for producing and assaying the enzyme are still lacking, hampering the ability to screen inhibitors.

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) is a ubiquitous enzyme required for folate recycling and dTMP synthesis. A cDNA encoding Plasmodium falciparum (Pf) SHMT was expressed as a hexa-histidine tagged protein in Escherichia coli BL21-CodonPlus (DE3)-RIL. The protein was purified and the process yielded 3.

View Article and Find Full Text PDF

Antiplasmodial 9-anilinoacridine derivatives exert their effects either by inhibiting DNA topoisomerase (topo) II or by interfering with heme crystallization within the parasite acidic food vacuole. Previous studies have shown that analogs of 9-anilinoacridine containing 3,6-diamino substitutions (in the acridine ring) inhibit Plasmodium falciparum DNA topo II in situ, whereas those with a 3,6-diCl substitution act by inhibiting beta-hematin formation, a property also seen with 3,6-diamino-1'-dimethyl-9-anilinoacridine (DDAA). To understand this seemingly anomalous property of DDAA, studies of its interaction with hematin and localization within the parasite food vacuole were undertaken.

View Article and Find Full Text PDF