The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga.
View Article and Find Full Text PDFThe bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development.
View Article and Find Full Text PDFThe work considered the properties of a biosensor based on a novel nanomaterial-modified thermally expanded graphite (TEG). The main focus was on whether the procedure of additional graphite thermal expansion would affect the electrochemical properties of biosensors based on membrane fractions of acetic acid bacteria . Raman spectroscopy, scanning electron microscopy and electrochemical analysis were used for the study.
View Article and Find Full Text PDFDuring the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains and Mongolia. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport and regular dietary dependence on meat and milk, hard evidence for these economic features has not been found.
View Article and Find Full Text PDFRecent years have witnessed an ever-increasing interest in developing electrochemical biosensors based on direct electron transfer-type bioelectrocatalysis. This work investigates the bioelectrocatalytic oxidation of glucose by membrane fractions of cells on screen-printed electrodes modified with thermally expanded graphite and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Electrooxidation of glucose was shown to occur without the presence of electron transport mediators.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
August 2019
Investigation of the archeological material at the molecular level can reveal the composition of ancient paint, balsamic material, reveal cooking recipes, etc. High-resolution mass spectrometry is a powerful technique with underestimated potential for archeology. Here, we present the investigation of the 3000-year-old archeological remains, identified as parts of internal organs of an Egyptian mummy, using high-resolution Orbitrap mass spectrometry.
View Article and Find Full Text PDFObjectives: It is a big challenge to diagnose the motives behind trepanations in prehistoric crania. Surgical-therapeutic attempts may be apparent by the presence of fractures, however, ritual or nonmedical motives are rarely supported by visible evidence in the bones. This article presents data on the trepanations of several individuals from South Russia dating to the Eneolitic and Bronze Age that may indicate a ritual procedure.
View Article and Find Full Text PDFNMR spectroscopy was applied for studying the products of glucose and sorbitol oxidation by cells of Gluconobacter oxydans. An analysis of 1H NMR spectra showed that the transformation of glucose results in the formation of diketogluconic acid, and sorbitol is oxidized to sorbose. In the 32P NMR spectra, only a signal of inorganic phosphate was detected, which accumulated in the medium as a result of cell lysis.
View Article and Find Full Text PDFPrikl Biokhim Mikrobiol
November 2004
Degradation of 2,4-dinitrophenol (2,4-DNP) by the cells of Rhodococcus erythropolis HL PM-1 was studied. The enzymes involved in 2,4-DNP degradation were inducible, and their resynthesis took place during the process. Cell immobilization by embedding into agar gels decreased the degrader activity.
View Article and Find Full Text PDFA model of a reactor-type biosensor based on the Rhodococcus erythropolis HL PM-1 was developed for amperometric detection of 2,4-dinitrophenol (2,4-DNP). The effects of the matrix material (agar and calcium alginate gels, ceramic support, and cellulose powder) on the biosensor signal concentration dependence, detection time, and biosensor stability were studied. In case of bacterial cells immobilized on cellulose powder, the lower limit of 2,4-DNP detection was 20 microM and the time of single analysis, the biosensor recovery included, was 30-50 min.
View Article and Find Full Text PDF