Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy.
View Article and Find Full Text PDFMol Ther Oncolytics
December 2022
Malignant rhabdoid tumors (MRTs) are rare and highly aggressive pediatric cancers with no standard of care. MRTs are characterized by loss of SMARCB1, which results in upregulated expression of enhancer of zeste homolog 2 (EZH2), which is responsible for the methylation of lysine 27 of histone H3 (H3K27me3), leading to the repression of gene expression. Although previous reports suggest EZH2 as an effective therapeutic target, the functions of EZH1, the other homolog of EZH, in MRT remain unknown.
View Article and Find Full Text PDFMonocytic leukemia zinc finger protein (MOZ, MYST3, or KAT6A) is a MYST-type acetyltransferase involved in chromosomal translocation in acute myelogenous leukemia (AML) and myelodysplastic syndrome. MOZ is established as essential for hematopoiesis; however, the role of MOZ in AML has not been addressed. We propose that MOZ is critical for AML development induced by MLL-AF9, MLL-AF10, or MOZ-TIF2 fusions.
View Article and Find Full Text PDFBackground: Chondrosarcoma is a common form of malignant bone tumor with limited treatment options. Approximately half of chondrosarcomas harbor gain-of-function mutations in isocitrate dehydrogenase (IDH), and mutant IDH produces 2-hydroxyglutarate (2-HG), which is an oncometabolite that contributes to malignant transformation. Therefore, inhibiting 2-HG production is a novel and promising treatment for advanced chondrosarcoma.
View Article and Find Full Text PDFAlthough it is held that proinflammatory changes precede the onset of breast cancer, the underlying mechanisms remain obscure. Here, we demonstrate that FRS2β, an adaptor protein expressed in a small subset of epithelial cells, triggers the proinflammatory changes that induce stroma in premalignant mammary tissues and is responsible for the disease onset. FRS2β deficiency in mouse mammary tumor virus (MMTV)-ErbB2 mice markedly attenuated tumorigenesis.
View Article and Find Full Text PDFBackground: Mutant isocitrate dehydrogenase (IDH) in chondrosarcoma produces the oncometabolite 2-hydroxyglutarate (2-HG) and contributes to malignant progression, and is therefore a potential therapeutic target for chondrosarcoma. Robust historical control data are important in clinical trials of rare cancers such as chondrosarcoma in order to show a clear benefit of new drugs. However, it remains controversial whether IDH mutation status is associated with the clinical outcome of chondrosarcoma, and this hinders the development of mutant IDH inhibitors in clinical trials.
View Article and Find Full Text PDFBackground: Effective treatments for cancer harboring mutant RAS are lacking. In Drosophila, it was reported that PP6 suppresses tumorigenicity of mutant RAS. However, the information how PP6 regulates oncogenic RAS in mammals is limited.
View Article and Find Full Text PDFChromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated.
View Article and Find Full Text PDFProtein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells.
View Article and Find Full Text PDFGliomas are the second most common primary brain tumors in adults. They are treated with combination therapies, including surgery, radiotherapy, and chemotherapy. There are currently limited treatment options for recurrent gliomas, and new targeted therapies need to be identified, especially in glioblastomas, which have poor prognosis.
View Article and Find Full Text PDFChronic myelomonocytic leukemia (CMML) constitutes a hematopoietic stem cell (HSC) disorder characterized by prominent monocytosis and myelodysplasia. Although genome sequencing has revealed the CMML mutation profile, the mechanism of disease development remains unclear. Here we show that aberrant histone acetylation by nucleoporin-98 (NUP98)-HBO1, a newly identified fusion in a patient with CMML, is sufficient to generate clinically relevant CMML pathogenesis.
View Article and Find Full Text PDFAntibody-based therapeutic strategies have become recognized as useful clinical options in several types of cancer, often with the expectation that such therapies will trigger target cell elimination via antibody-dependent cellar cytotoxicity (ADCC) by natural killer cells. The successful development of therapeutic monoclonal antibodies (mAbs) requires an assay system that permits a critical evaluation of their physicochemical and biological characteristics. At present a number of ADCC assay systems have been reported, however, there is still room for improvement in terms of usability, operability and sensitivity.
View Article and Find Full Text PDFMultiple myeloma (MM) is an incurable hematological malignancy caused by accumulation of abnormal clonal plasma cells. Despite the recent development of novel therapies, relapse of MM eventually occurs as a result of a remaining population of drug-resistant myeloma stem cells. Side population (SP) cells show cancer stem cell-like characteristics in MM; thus, targeting these cells is a promising strategy to completely cure this malignancy.
View Article and Find Full Text PDFPolycomb group (PcG) proteins regulate the expression of target genes by modulating histone modifications and are representative epigenetic regulators that maintain the stemness of embryonic and hematopoietic stem cells. Histone methyltransferases enhancer of zeste homolog 1 and 2 (EZH1/2), which are subunits of polycomb repressive complexes (PRC), are recurrently mutated or highly expressed in many hematological malignancies. EZH2 has a dual function in tumorigenesis as an oncogene and tumor suppressor gene, and targeting PRC2, in particular EZH1/2, for anticancer therapy has been extensively developed in the clinical setting.
View Article and Find Full Text PDFEradication of chemotherapy-resistant leukemia stem cells is expected to improve treatment outcomes in patients with acute myelogenous leukemia (AML). In a mouse model of AML expressing the fusion, we found that Ring1A and Ring1B, components of Polycomb repressive complex 1, play crucial roles in maintaining AML stem cells. Deletion of and (/) from AML cells diminished self-renewal capacity and induced the expression of numerous genes, including Overexpression of caused AML cells to differentiate into mature cells, whereas knockdown in /-deficient cells inhibited differentiation.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive and lethal blood cancer originating from rare populations of leukemia stem cells (LSCs). AML relapse after conventional chemotherapy is caused by a remaining population of drug-resistant LSCs. Selective targeting of the chemoresistant population is a promising strategy for preventing and treating AML relapse.
View Article and Find Full Text PDFEpigenetic regulation is required to ensure the precise spatial and temporal pattern of gene expression that is necessary for embryonic development. Although the roles of some epigenetic modifications in embryonic development have been investigated in depth, the role of methylation at lysine 79 (H3K79me) is poorly understood. Dot1L, a unique methyltransferase for H3K79, forms complexes with distinct sets of co-factors.
View Article and Find Full Text PDFGlobal histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation-mediated histone replacement remains poorly understood. Here, we report that EPC1 and TIP60, two critical components of the mammalian nucleosome acetyltransferase of H4 (NuA4) complexes, are coexpressed in male germ cells.
View Article and Find Full Text PDFRearrangements involving the NUP98 gene resulting in fusions to several partner genes occur in acute myeloid leukemia and myelodysplastic syndromes. This study demonstrates that the second FG repeat domain of the NUP98 moiety of the NUP98-HOXA9 fusion protein is important for its cell immortalization and leukemogenesis activities. We demonstrate that NUP98-HOXA9 interacts with mixed lineage leukemia (MLL) via this FG repeat domain and that, in the absence of MLL, NUP98-HOXA9-induced cell immortalization and leukemogenesis are severely inhibited.
View Article and Find Full Text PDF