Publications by authors named "Kit-Yinn Teh"

Microalgae are photosynthetic organisms functioning as the green bio-factories for various pharmaceutical and biofuel products. To date, numerous attempts have been carried out to manipulate culture conditions to maximize the production of the desired metabolites. Because light is the energy source of microalgae for their growth and metabolites biosynthesis, it has been one of the most investigated variables emphasized on the deep understanding of how microalgae respond towards light changes as an external stimulus.

View Article and Find Full Text PDF

In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties.

View Article and Find Full Text PDF

Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt).

View Article and Find Full Text PDF

Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); UMT-M1 and SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform.

View Article and Find Full Text PDF

Nitrate is required to maintain the growth and metabolism of plant and animals. Nevertheless, in excess amount such as polluted water, its concentration can be harmful to living organisms such as microalgae. Recently, studies on microalgae response towards nutrient fluctuation are usually limited to lipid accumulation for the production of biofuels, disregarding the other potential of microalgae to be used in wastewater treatments and as source of important metabolites.

View Article and Find Full Text PDF

This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%).

View Article and Find Full Text PDF