Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction.
View Article and Find Full Text PDFThis simulation-based study presented a novel hybrid RF antenna array designed for neck cancer treatment within a 7T MRI system. The proposed design aimed to provide microwave hyperthermia to release 19F-labeled anticancer drugs from thermosensitive liposomes, facilitating drug concentration monitoring through 19F imaging and enabling 1H anatomical imaging and MR thermometry for temperature control. The design featured a bidirectional microstrip for generating the magnetic |B1|-fields required for 1H and 19F MR imaging, along with a patch antenna for localized RF heating.
View Article and Find Full Text PDFThe brain has a highly selective semipermeable blood barrier, termed the blood-brain barrier (BBB), which prevents the delivery of therapeutic macromolecular agents to the brain. The integration of MR-guided low-intensity pulsed focused ultrasound (FUS) with microbubble pre-injection is a promising technique for non-invasive and non-toxic BBB modulation. MRI can offer superior soft-tissue contrast and various quantitative assessments, such as vascular permeability, perfusion, and the spatial-temporal distribution of MRI contrast agents.
View Article and Find Full Text PDFBackground: Very low birth weight infants (VLBWIs) continue to face high mortality risk influenced by the care quality of neonatal intensive care units (NICUs). Under-standing the impact of workload and regional differences on these rates is crucial for improving outcomes.
Purpose: This study aimed to assess how the structural and staffing attributes of NICUs influence the mortality rates of VLBWIs, emphasizing the significance of the availability of medical personnel and the regional distribution of care facilities.
As IoT technology advances, using machine learning to detect user activities emerges as a promising strategy for delivering a variety of smart services. It is essential to have access to high-quality data that also respects privacy concerns and data streams from ambient sensors in the surrounding environment meet this requirement. However, despite growing interest in research, there is a noticeable lack of datasets from ambient sensors designed for public spaces, as opposed to those for private settings.
View Article and Find Full Text PDFObjectives: To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming.
Materials And Methods: Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery.
Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition.
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD) is a serious chronic lung disease affecting extremely preterm infants. While mitochondrial dysfunction has been investigated in various medical conditions, limited research has explored mitochondrial DNA (mtDNA) gene mutations, specifically in BPD. This study aimed to evaluate mitochondrial mtDNA gene mutations in extremely preterm infants with BPD.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2023
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
View Article and Find Full Text PDFBackground: T2-weighted Single Shot Fast Spin Echo (SSFSE) scans at 3 Tesla (3T) are increasingly used to image fetal pathology due to their excellent tissue contrast resolution and signal-to-noise ratio (SNR). Temperature changes that may occur in response to radio frequency (RF) pulses used for these sequences at 3T have not been studied in human fetal brains. To evaluate the safety of T2-weighted SSFSE for fetal brains at 3T, magnetic resonance (MR) thermometry was used to measure relative temperature changes in a typical clinical fetal brain MR exam.
View Article and Find Full Text PDFIntroduction: This study aimed to investigate the outcomes of infants at 18-24 months born in the Korean Neonatal Network with a birth weight <500 g.
Methods: The anthropometric and neurodevelopmental data of infants with a birth weight <500 g at a gestational age of ≥22 weeks who were registered in the Korean Neonatal Network 2013-2017 and followed up at a corrected age of 18-24 months were reviewed. Neurodevelopmental impairment was defined as the presence of any of the following: (1) cerebral palsy; (2) severe visual impairment; (3) hearing impairment; or (4) cognitive impairment.
The recent exponential growth of metaverse technology has been instrumental in reshaping a myriad of sectors, not least digital healthcare. This comprehensive review critically examines the landscape and future applications of metaverse wearables toward immersive digital healthcare. The key technologies and advancements that have spearheaded the metamorphosis of metaverse wearables are categorized, encapsulating all-encompassed extended reality, such as virtual reality, augmented reality, mixed reality, and other haptic feedback systems.
View Article and Find Full Text PDFObjective: To assess the safety and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment extra-abdominal desmoids.
Methods: A total of 105 patients with desmoid fibromatosis (79 females, 26 males; 35 ± 14 years) were treated with MRgFUS between 2011 and 2021 in three centers. Total and viable tumors were evaluated per patient at last follow-up after treatment.
Purpose: To develop an effective and practical reconstruction pipeline to achieve motion-robust, multi-slice, real-time MR thermometry for monitoring thermal therapy in abdominal organs.
Methods: The application includes a fast spiral magnetic resonance imaging (MRI) pulse sequence and a real-time reconstruction pipeline based on multi-baseline proton resonance frequency shift (PRFS) method with visualization of temperature imaging. The pipeline supports multi-slice acquisition with minimal reconstruction lag.
Globally new pandemic diseases induce urgent demands for portable diagnostic systems to prevent and control infectious diseases. Smartphone-based portable diagnostic devices are significantly efficient tools to user-friendly connect personalized health conditions and collect valuable optical information for rapid diagnosis and biomedical research through at-home screening. Deep learning algorithms for portable microscopes also help to enhance diagnostic accuracy by reducing the imaging resolution gap between benchtop and portable microscopes.
View Article and Find Full Text PDFBackground: In magnetic resonance (MR)-guided thermal therapy, respiratory motion can cause a significant temperature error in MR thermometry and reduce the efficiency of the treatment. A respiratory motion simulator is necessary for the development of new MR imaging (MRI) and motion compensation techniques.
Purpose: The purpose of this study is to develop a low-cost and simple MR-compatible respiratory motion simulator to support proof-of-concept studies of MR monitoring approaches with respiratory-induced abdominal organ motion.
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies.
View Article and Find Full Text PDFPurpose: The ExAblate body MRgFUS system requires advanced beamforming strategies for volumetric hyperthermia. This study aims to develop and evaluate electronic beam steering, multi-focal patterns, and sector vortex beamforming approaches in conjunction with partial array activation using an acoustic and biothermal simulation framework along with phantom experiments.
Methods: The simulation framework was developed to calculate the 3D acoustic intensity and temperature distribution resulting from various beamforming and scanning strategies.
Purpose: The agreement between axillary temperature (AT) and rectal temperature (RT) measurements has not been well established in preterm infants. Therefore, our study aimed to evaluate the agreement between AT and RT measurements in very preterm infants.
Methods: Preterm infants <32 weeks of gestational age were prospectively included.
We report an ultrathin arrayed camera (UAC) for high-contrast near infrared (NIR) imaging by using microlens arrays with a multilayered light absorber. The UAC consists of a multilayered composite light absorber, inverted microlenses, gap-alumina spacers and a planar CMOS image sensor. The multilayered light absorber was fabricated through lift-off and repeated photolithography processes.
View Article and Find Full Text PDFBackground: To evaluate the long-term functional and structural pulmonary development in children with repaired congenital diaphragmatic hernia (CDH) and to identify the associated perinatal-neonatal risk factors.
Methods: Children with repaired CDH through corrective surgery who were born at gestational age ≥ 35 weeks were included in this analysis. Those who were followed for at least 5 years were subjected to spirometry and chest computed tomography for evaluation of their functional and structural growth.