Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) causes inflammation and fibrosis. Our previous work has shown that industrially produced MWCNTs trigger specific changes in gene expression in the lungs of exposed animals. To elucidate whether epigenetic effects play a role for these gene expression changes, we performed whole genome bisulphite sequencing to assess DNA methylation patterns in the lungs 56 days after exposure to MWCNTs.
View Article and Find Full Text PDFHuman exposures to asbestiform elongate mineral particles (EMP) may lead to diffuse fibrosis, lung cancer, malignant mesothelioma and autoimmune diseases. Cleavage fragments (CF) are chemically identical to asbestiform varieties (or habits) of the parent mineral, but no consensus exists on whether to treat them as asbestos from toxicological and regulatory standpoints. Alveolar macrophages (AM) are the first responders to inhaled particulates, participating in clearance and activating other resident and recruited immunocompetent cells, impacting the long-term outcomes.
View Article and Find Full Text PDFCellulose nanocrystals (CNC), also known as nanowhiskers, have recently gained much attention due to their biodegradable nature, advantageous chemical and mechanical properties, economic value and renewability thus making them attractive for a wide range of applications. However, before these materials can be considered for potential uses, investigation of their toxicity is prudent. Although CNC exposures are associated with pulmonary inflammation and damage as well as oxidative stress responses and genotoxicity in vivo, studies evaluating cell transformation or tumorigenic potential of CNC's were not previously conducted.
View Article and Find Full Text PDFPulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers.
View Article and Find Full Text PDFIn addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs.
View Article and Find Full Text PDFCalcium carbonate rock dust (RD) is used in mining to reduce the explosivity of aerosolized coal. During the dusting procedures, potential for human exposure occurs, raising health concerns. To improve RD aerosolization, several types of anti-caking surface treatments exist.
View Article and Find Full Text PDFCarbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages.
View Article and Find Full Text PDFHumans exposed to asbestos and/or asbestiform fibers are at high risk of developing many lung diseases including asbestosis, lung cancer, and malignant mesothelioma. However, the disease-causing potential and specific metabolic mechanisms and pathways associated with various asbestos/asbestiform fiber exposures triggering different carcinogenic and non-carcinogenic outcomes are still largely unknown. The aim of this this study was to investigate gene expression profiles and inflammatory responses to different asbestos/asbestiform fibers at the acute/sub-acute phase that may be related to delayed pathological outcomes observed at later time points.
View Article and Find Full Text PDFWith the rapid development of synthetic alternatives to mineral fibers, their possible effects on the environment and human health have become recognized as important issues worldwide. This study investigated effects of four fibrous materials, i.e.
View Article and Find Full Text PDFPurpose Of The Study: A number of in vivo studies have shown that pulmonary exposure to carbon nanotubes (CNTs) may lead to an acute local inflammatory response, pulmonary fibrosis, and granulomatous lesions. Among the factors that play direct roles in initiation and progression of fibrotic processes are epithelial-mesenchymal transition and myofibroblasts recruitment/differentiation, both mediated by transforming growth factor-β1 (TGF-β1). Yet, other contributors to TGF-β1 associated signaling, such as osteopontin (OPN) has not been fully investigated.
View Article and Find Full Text PDFNanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF).
View Article and Find Full Text PDFA significant amount of research toward commercial development of cellulose based nanomaterials (CNM) is now in progress with some potential applications. Using human A549 and THP-1 cells, we evaluated the biological responses of various CNMs, made out of similar material but with functional and morphological variations. While A549 cells displayed minimal or no cytotoxic responses following exposure to CNMs, THP-1 cells were more susceptible to cytotoxicity, cellular damage and inflammatory responses.
View Article and Find Full Text PDFOver the past several years there has been an increased number of applications of cellulosic materials in many sectors, including the food industry, cosmetics, and pharmaceuticals. However, to date, there are few studies investigating the potential adverse effects of cellulose nanocrystals (CNC). The objective of this study was to determine long-term outcomes on the male reproductive system of mice upon repeated pharyngeal aspiration exposure to CNC.
View Article and Find Full Text PDFBackground: Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment.
View Article and Find Full Text PDFBackground: As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans.
View Article and Find Full Text PDFLocal inflammatory response in the lungs and fi brogenic potential of multi-walled carbon nanotubes were studied in an acute aspiration experiment in mice. The doses were chosen based on the concentration of nanotubes in the air at a workplace of the company-producer. ELISA, fl ow cytometry, enhanced darkfield microscopy, and histological examination showed that multi-walled carbon nanotubes induced local inflammation, oxidative stress, and connective tissue growth (fibrosis).
View Article and Find Full Text PDFDuring the last decades, changes have been observed in the frequency of different histologic subtypes of lung cancer, one of the most common causes of morbidity and mortality, with a declining proportion of squamous cell carcinomas and an increasing proportion of adenocarcinomas, particularly in developed countries. This suggests the emergence of new etiologic factors and mechanisms, including those defining the lung microenvironment, promoting tumor growth. Assuming that the lung is the main portal of entry for broadly used nanomaterials and their established proinflammatory propensities, we hypothesized that nanomaterials may contribute to changes facilitating tumor growth.
View Article and Find Full Text PDFAltering the fuel source from petroleum-based ultralow sulfur diesel to biodiesel and its blends is considered by many to be a sustainable choice for controlling exposures to particulate material. As the exhaust of biodiesel/diesel blends is composed of a combination of combustion products of polycyclic aromatic hydrocarbons and fatty acid methyl esters, we hypothesize that 50% biodiesel/diesel blend (BD50) exposure could induce harmful outcomes because of its ability to trigger oxidative damage. Here, adverse effects were compared in murine male reproductive organs after pharyngeal aspiration with particles generated by engine fueled with BD50 or neat petroleum diesel (D100).
View Article and Find Full Text PDFIn contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.
View Article and Find Full Text PDFNanomaterials are being utilized in an increasing variety of manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNTs) have found numerous applications in the electronics, aerospace, chemical, polymer, and pharmaceutical industries. Previously, we have reported that pharyngeal exposure of C57BL/6 mice to SWCNTs caused dose-dependent formation of granulomatous bronchial interstitial pneumonia, fibrosis, oxidative stress, acute inflammatory/cytokine responses, and a decrease in pulmonary function.
View Article and Find Full Text PDFSeveral lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response.
View Article and Find Full Text PDFThe use of cellulose as building blocks for the development of novel functional materials is rapidly growing. Cellulose nanocrystals (CNC), with advantageous chemical and mechanical properties, have gained prominence in a number of applications, such as in nanofillers in polymer composites, building materials, cosmetics, food, and the drug industry. Therefore, it becomes critical to evaluate the potential health effects associated with CNC exposures.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2014
The hallmark geometric feature of single-walled carbon nanotubes (SWCNT) and carbon nanofibers (CNF), high length to width ratio, makes them similar to a hazardous agent, asbestos. Very limited data are available concerning long-term effects of pulmonary exposure to SWCNT or CNF. Here, we compared inflammatory, fibrogenic, and genotoxic effects of CNF, SWCNT, or asbestos in mice 1 yr after pharyngeal aspiration.
View Article and Find Full Text PDFOver the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data.
View Article and Find Full Text PDF