The gas-phase rotational spectrum from 8 to 750 GHz and the high-resolution infrared (IR) spectrum of pyridazine (o-C4H4N2) have been analyzed for the ground and four lowest-energy vibrationally excited states. A combined global fit of the rotational and IR data has been obtained using a sextic, centrifugally distorted-rotor Hamiltonian with Coriolis coupling between appropriate states. Coriolis coupling has been addressed in the two lowest-energy coupled dyads (ν16, ν13 and ν24, ν9).
View Article and Find Full Text PDFMicrosolvation of the carbamate moiety delivers precise information on complexation effects on the N-C=O backbone and is of relevance to the peptide bond functionality. In this context, the mono-, di-, and trihydrated complexes of methyl carbamate have been studied in molecular expansion by high-resolution microwave spectroscopy, using chirped-pulse and Fabry-Perot resonator Fourier transform microwave instruments covering the frequency range from 2 to 18 GHz. From the rotational constants of the parent and the 18Ow substituted monoisotopologues, accurate values have been derived for the geometries of the hydrogen bond interactions.
View Article and Find Full Text PDFThe orientation and magnitude of the molecular electric dipole moment are key properties relevant to topics ranging from the nature of intermolecular interactions to the quantitative analysis of complex gas-phase mixtures, such as chemistry in astrophysical environments. Stark effect measurements on rotational spectra have been the method of choice for isolated molecules but have become less common with the practical disappearance of Stark modulation spectrometers. Their role has been taken over by supersonic expansion measurements within a Fabry-Perot resonator cavity, which introduces specific technical problems that need to be overcome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Most biomolecular activity takes place in aqueous environments, and it is strongly influenced by the surrounding water molecules. The hydrogen bond networks that these water molecules form are likewise influenced by their interactions with the solutes, and thus, it is crucial to understand this reciprocal process. Glycoaldehyde (Gly), often considered the smallest sugar, represents a good template to explore the steps of solvation and determine how the organic molecule shapes the structure and hydrogen bond network of the solvating water cluster.
View Article and Find Full Text PDFWe report the observation and analysis of the rotational spectrum of a 1:1 cluster between 2-aminopyridine and water (AMW) carried out with supersonic expansion Fourier transform microwave spectroscopy at 4.7-16.5 GHz.
View Article and Find Full Text PDFThe ability and preference of 3-oxetanone to form hydrogen or tetrel bonds have been investigated in its complexes with water and formaldehyde by using Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Different types of interactions and internal dynamics have been observed in the targeted complexes. With water, the ether oxygen of 3-oxetanone is the favoured interaction site forming a classical O-HO hydrogen bond.
View Article and Find Full Text PDFMicrosolvated complexes of ethyl carbamate (urethane) with up to three water molecules formed in a supersonic expansion have been characterized by high-resolution microwave spectroscopy. Both chirped-pulse and cavity Fourier transform microwave spectrometers covering the 2-13 GHz frequency range have been used. The structures of the complexes have been characterized and show water molecules closing sequential cycles through hydrogen bonding with the amide group.
View Article and Find Full Text PDFCarbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules.
View Article and Find Full Text PDFThe structure of butyl carbamate and of its complex with water generated in a supersonic expansion has been characterized by Fourier transform microwave spectroscopy. Up to 13 low-energy conformations of the monomer have been predicted that differ in the relative orientation of the butyl chain and the amide group. However, only three conformations have been observed experimentally.
View Article and Find Full Text PDFBond length alternation is a chemical phenomenon in benzene rings fused to other rings, which has been mainly predicted theoretically. Its physical origin is still not clear and has generated discussion. Here, by using a strategy that combines microwave spectroscopy, custom-made synthesis and high-level ab initio calculations, we demonstrate that this phenomenon is clearly observed in the prototype indazole molecule isolated in the gas phase.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2018
The rich potential energy surface of the water undecamer (HO) was explored with a basin hopping algorithm using a TIP4P potential and other methods followed by extensive ab initio MP2 minimizations and CCSD(T) corrections. This protocol yielded 17, 66, and 125 distinct isomers within 0.5, 1.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are key players in reaction chemistry. While it is postulated that they serve as a basis for ice grains, there has been no direct detection of PAHs in astronomical environments. We aim to investigate the hydration of PAHs to set a foundation for the future exploration of potential ice formation pathways.
View Article and Find Full Text PDFWe report the results of a broadband rotational spectroscopic study of corannulene, CH, all of its singly substituted C isotopologues, and a complex of corannulene with one molecule of water. Corannulene is a polycyclic aromatic hydrocarbon (PAH) with a curved structure that results in a large dipole moment. Observation of C isotopic species in natural abundance allowed us to precisely determine the molecular structure of corannulene.
View Article and Find Full Text PDFThe recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CHNCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified.
View Article and Find Full Text PDFThe nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional hydrogen-bond networks, rather than cyclic two-dimensional topologies.
View Article and Find Full Text PDFUsing broadband rotational spectroscopy, we report here on the delicate interplay between hydrogen bonds and dispersive forces when an unprecedentedly large organic molecule (camphor, C10H16O) is microsolvated with up to three molecules of water. Unambiguous assignment was achieved by performing multi H2(18)O isotopic substitution of clustered water molecules. The observation of all possible mono- and multi-H2(18)O insertions in the cluster structure yielded accurate structural information that is not otherwise achievable with single-substitution experiments.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra.
View Article and Find Full Text PDFBroadband rotational spectroscopy of water clusters produced in a pulsed molecular jet expansion has been used to determine the oxygen atom geometry in three isomers of the nonamer and two isomers of the decamer. The isomers for each cluster size have the same nominal geometry but differ in the arrangement of their hydrogen bond networks. The nearest neighbor OO distances show a characteristic pattern for each hydrogen bond network isomer that is caused by three-body effects that produce cooperative hydrogen bonding.
View Article and Find Full Text PDFThe rotational spectra of two isotopologues of a 1:1 difluoromethane-dichloromethane complex have been investigated by pulsed-jet Fourier-transform microwave spectroscopy. The assigned (most stable) isomer has C(s) symmetry and it displays a network of two C-H⋅⋅⋅Cl-C and one C-H⋅⋅⋅F-C weak hydrogen bonds, thus suggesting that the former interactions are stronger. The hyperfine structures owing to (35)Cl (or (37)Cl) quadrupolar effects have been fully resolved, thus leading to an accurate determination of the three diagonal (χ(gg); g=a, b, c) and the three mixed quadrupole coupling constants (χ(gg'); g, g'=a, b, c; g≠g').
View Article and Find Full Text PDFThe high resolution Fourier transform spectrum of the chemically challenging sulfur dicyanide, S(CN)2, molecule was recorded at the far-infrared beamline of the synchrotron at the Canadian Light Source. The spectrum covered 50-350 cm(-1), and transitions in three fundamentals, ν4, ν7, and ν8, as well as in the hot-band sequence (n + 1)ν4 - nν4, n = 1-4, have been assigned and measured. Global analysis of over 21,300 pure rotation and rotation vibration transitions allowed determination of precise energies for 12 of the lowest vibrationally excited states of S(CN)2, including the five lowest fundamentals.
View Article and Find Full Text PDFThe pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling.
View Article and Find Full Text PDFTheory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures.
View Article and Find Full Text PDFThe rotational spectrum of the cyclic (HCl)(2)H(2)O cluster has been identified for the first time in the chirped pulse, Fourier transform microwave spectrum of a supersonically expanded HCl/H(2)O/Ar mixture. The spectrum was measured at frequencies 6-18.5 GHz, and transitions in two inversion-tunneling states, at close to 1 : 3 relative intensity, have been assigned for the parent species.
View Article and Find Full Text PDF