Since Sørensen and Bjerrum defined the pH scale, we have relied on two methods for determining pH, the colorimetric or the electrochemical. For pH electrodes, calibration is easy as a linear response is observed in the interesting pH range from 1 to ∼12. For colorimetric sensors, the response follows the sigmoidal Bjerrum diagram of an acid-base equilibrium.
View Article and Find Full Text PDFOptical pH sensors enable noninvasive monitoring of pH, yet in pure sensing terms, the potentiometric method of measuring pH is still vastly superior. Here, we report a full spectrometer-based optical pH sensor system consisting of sensor chemistry, hardware, and software that for the first time is capable of challenging the performance of an electrode-based pH meter in specific applications such as biopharmaceutical process monitoring and in single-use bioproduction. A highly photostable triangulenium fluorophore emitting at 590 nm was immobilized in an organically modified silicon matrix that allows for fast time-response by rapid diffusion of water in and out of the resulting composite polymer deposited on a polycarbonate substrate.
View Article and Find Full Text PDFA new four-component organically modified silicate (ORMOSIL) material was developed with optical pH sensors in mind. Through a sol-gel process, the porosity of an ORMOSIL framework was optimized to allow rapid diffusion of protons, ideal for fast response to pH in an optical sensor. The optically transparent material was produced by catalyzing the dual polymerization of 3-(glycidoxy)propyltrimethoxysilane (GPTMS) and propyltriethoxysilane (PrTES) with boron trifluoride diethyl etherate.
View Article and Find Full Text PDF