Publications by authors named "Kishore R Rollakanti"

Photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) to drive synthesis of protoporphryin IX (PpIX) is a promising, scar-free alternative to surgery for skin cancers, including squamous cell carcinoma (SCC) and SCC precursors called actinic keratoses. In the United States, PDT is only FDA approved for treatment of actinic keratoses; this narrow range of indications could be broadened if PDT efficacy were improved. Toward that goal, we developed a mechanism-based combination approach using 5-fluorouracil (5-FU) as a neoadjuvant for ALA-based PDT.

View Article and Find Full Text PDF

Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)-induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe-based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)-induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24-week UV carcinogenesis protocol.

View Article and Find Full Text PDF

Cutaneous metastasis occurs more frequently in breast cancer than in any other malignancy in women, causing significant morbidity. Photodynamic therapy (PDT), which combines a porphyrin-based photosensitizer and activation by light, can be employed for breast cancer (especially cutaneous metastases) but tumor control after PDT has not surpassed traditional treatments methods such as surgery, radiation, and chemotherapy up to now. Here, we report that breast cancer nodules in mice can be effectively treated by preconditioning the tumors with 1α, 25-dihydroxyvitamin D3 (calcitriol; Vit D) prior to administering 5-aminolevulinate (ALA)-based PDT.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), in which 5-ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA-PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT-induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a treatment modality that uses a specific photosensitizing agent, molecular oxygen, and light of a particular wavelength to kill cells targeted by the therapy. Topically administered aminolevulinic acid (ALA) is widely used to effectively treat cancerous and precancerous skin lesions, resulting in targeted tissue damage and little to no scarring. The targeting aspect of the treatment arises from the fact that ALA is preferentially converted into protoporphyrin IX (PpIX) in neoplastic cells.

View Article and Find Full Text PDF