Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell membrane images. Existing approaches also require fine-tuning multiple manually selected hyperparameters on the new datasets.
View Article and Find Full Text PDFUnlabelled: Animals make organs of precise size, shape, and symmetry but how developing embryos do this is largely unknown. Here, we combine quantitative imaging, physical theory, and physiological measurement of hydrostatic pressure and fluid transport in zebrafish to study size control of the developing inner ear. We find that fluid accumulation creates hydrostatic pressure in the lumen leading to stress in the epithelium and expansion of the otic vesicle.
View Article and Find Full Text PDFOptical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire brain.
View Article and Find Full Text PDFThe inner ear is a fluid-filled closed-epithelial structure whose function requires maintenance of an internal hydrostatic pressure and fluid composition. The endolymphatic sac (ES) is a dead-end epithelial tube connected to the inner ear whose function is unclear. ES defects can cause distended ear tissue, a pathology often seen in hearing and balance disorders.
View Article and Find Full Text PDFBalancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube.
View Article and Find Full Text PDFTrue physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo.
View Article and Find Full Text PDFBackground: Paired organs in animals are largely bilaterally symmetric despite inherent noise in most biological processes. How is precise organ shape and size achieved during development despite this noise? Examining paired organ development is a challenge because it requires repeated quantification of two structures in parallel within living embryos. Here we combine bilateral quantification of morphology through time with asymmetric perturbations to study regulation of organ shape, size, and symmetry in developing organ pairs.
View Article and Find Full Text PDFRapid advances in microscopy and genetic labeling strategies have created new opportunities for time-lapse imaging of embryonic development. However, methods for immobilizing embryos for long periods while maintaining normal development have changed little. In zebrafish, current immobilization techniques rely on the anesthetic tricaine.
View Article and Find Full Text PDFEpithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development.
View Article and Find Full Text PDFIn the last decade, level-set methods have been actively developed for applications in image registration, segmentation, tracking, and reconstruction. However, the development of a wide variety of level-set PDEs and their numerical discretization schemes, coupled with hybrid combinations of PDE terms, stopping criteria, and reinitialization strategies, has created a software logistics problem. In the absence of an integrative design, current toolkits support only specific types of level-set implementations which restrict future algorithm development since extensions require significant code duplication and effort.
View Article and Find Full Text PDFSharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning.
View Article and Find Full Text PDFThe quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes.
View Article and Find Full Text PDF