Publications by authors named "Kishore R Alugupalli"

Many bacterial polysaccharide vaccines, including the typhoid Vi polysaccharide (ViPS) and tetravalent meningococcal polysaccharide conjugate (MCV4) vaccines, do not incorporate adjuvants and are not highly immunogenic, particularly in infants. I found that endotoxin, a TLR4 ligand in ViPS, contributes to the immunogenicity of typhoid vaccines. Because endotoxin is pyrogenic, and its levels are highly variable in vaccines, I developed monophosphoryl lipid A, a nontoxic TLR4 ligand-based adjuvant named Turbo.

View Article and Find Full Text PDF

None of the typhoid Vi Polysaccharide (ViPS) subunit vaccines incorporate adjuvants, and the immunogenicity of ViPS vaccines (e.g. Typbar TCV and Typhim Vi) is in part due to associated TLR4 ligands such as endotoxin present in these vaccines.

View Article and Find Full Text PDF

Activation of the adaptive immune system requires the engagement of costimulatory pathways in addition to B and T cell Ag receptor signaling, and adjuvants play a central role in this process. Many Gram-negative bacterial polysaccharide vaccines, including the tetravalent meningococcal conjugate vaccines (MCV4) and typhoid Vi polysaccharide vaccines, do not incorporate adjuvants. The immunogenicity of typhoid vaccines is due to the presence of associated TLR4 ligands in these vaccines.

View Article and Find Full Text PDF

Activation of B cells and T cells requires the engagement of costimulatory signaling pathways in addition to Ag receptor signaling for efficient immune responses. None of the typhoid Vi polysaccharide (ViPS) subunit vaccines contains adjuvants that could activate costimulatory signaling pathways, yet these vaccines are very immunogenic. I hypothesized that residual TLR ligands present in the ViPS preparation used for making typhoid subunit vaccines account for the robust immune response generated by these vaccines.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains.

View Article and Find Full Text PDF

Circulating IgM present in the body prior to any apparent Ag exposure is referred to as natural IgM. Natural IgM provides protective immunity against a variety of pathogens. Salmonella enterica serovar Typhi (S.

View Article and Find Full Text PDF

Relapsing fever due to is characterized by recurrent bacteremia episodes. However, infection of , if not treated early, can spread to various organs including the central nervous system (CNS). CNS disease manifestations are commonly referred to as relapsing fever neuroborreliosis (RFNB).

View Article and Find Full Text PDF

In mice, pneumococcal polysaccharide (PPS) vaccines generate antigen-specific immunoglobulin M (IgM) and immunoglobulins G1, G2, and G3. Antibody and complement-dependent opsonophagocytosis correlates with the protection induced by PPS vaccines in vivo. Since IgM is a very efficient immunoglobulin isotype in activating the complement system, we evaluated whether anti-PPS IgM alone is sufficient to confer protective immunity to Streptococcus pneumoniae.

View Article and Find Full Text PDF

Polysaccharide vaccines such as the Vi polysaccharide (ViPS) of serovar Typhi induce efficient Ab responses in adults but not in young children. The reasons for this difference are not understood. IL-7 dependency in B cell development increases progressively with age.

View Article and Find Full Text PDF

B cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) of serovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines.

View Article and Find Full Text PDF

T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations.

View Article and Find Full Text PDF

Immunodeficient mice transplanted with human hematopoietic stem cells (HSCs) have been referred to as "Human Immune System" (HIS) mice and are a translational platform for studying human immune responses in vivo. Human HSC sources used in generating HIS mice include fetal liver (FL), umbilical cord blood (CB), and adult bone marrow (BM). Since HSCs from FL, CB, and BM are produced at various stages of human development, we tested whether mice transplanted with these three HSCs differ in their immune responses.

View Article and Find Full Text PDF

There is significant need to develop a single-dose rabies vaccine to replace the current multi-dose rabies vaccine regimen and eliminate the requirement for rabies immune globulin in post-exposure settings. To accomplish this goal, rabies virus (RABV)-based vaccines must rapidly activate B cells to secrete antibodies which neutralize pathogenic RABV before it enters the CNS. Increased understanding of how B cells effectively respond to RABV-based vaccines may improve efforts to simplify post-exposure prophylaxis (PEP) regimens.

View Article and Find Full Text PDF

Although evidence of the protective immunity conferred by B-1b cells (CD19(+) B220(+) IgM(hi) Mac1(+) CD5(-)) has been established, the mechanisms governing the maintenance and activation of B-1b cells following pathogen encounter remain unclear. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) mediate their function in mature B cells through the BAFF receptor (BAFFR) and transmembrane activator and CAML interactor (TACI). BAFFR-deficient mice have lower numbers of B-1b cells, and this reduction is directly proportional to BAFFR levels.

View Article and Find Full Text PDF

Immune response to T cell independent type 2 (TI-2) Ags, such as bacterial polysaccharides, is severely impaired in X-linked immunodeficient (XID) mice. In this study, we investigated the involvement of a proliferation-inducing ligand (APRIL) or BAFF and their receptors in the unresponsiveness of XID mouse to TI-2 Ags. We discovered that whereas serum BAFF levels were increased, the expression of the APRIL and BAFF receptor transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) was severely reduced in XID B cells.

View Article and Find Full Text PDF

T cell-independent antibody responses develop rapidly, within 3 to 4 days, and are critical for preventing blood-borne pathogens from evolving into life-threatening infections. The interaction of BAFF, also known as BLyS, with its receptors BAFFR and TACI on B cells is critical for B cell homeostasis and function. Using a synthetic polysaccharide antigen, it has previously been shown that TACI is critical for T cell-independent antibody responses.

View Article and Find Full Text PDF

The bacteria of the genus Borrelia are arthropod-borne spirochetes that cause relapsing fever and Lyme disease in humans. Like most arthropod-borne pathogens, Borreliae must survive in the periphery of their vertebrate hosts to allow for transmission to another arthropod vector. These spatial and temporal restrictions require that Borreliae evade the adaptive immune response.

View Article and Find Full Text PDF

Rodents are natural reservoirs for a variety of species of Borrelia that cause relapsing fever (RF) in humans. The murine model of this disease recapitulates many of the clinical manifestations of the human disease and has revealed that T cell-independent antibody responses are required to resolve the bacteremic episodes. However, it is not clear whether such protective humoral responses are mounted in humans.

View Article and Find Full Text PDF

The critical role of IgM in controlling pathogen burden has been demonstrated in a variety of infection models. In the murine model of Borrelia hermsii infection, IgM is necessary and sufficient for the rapid clearance of bacteremia. Convalescent, but not naïve, B1b cells generate a specific IgM response against B.

View Article and Find Full Text PDF

Overwhelming bacteremia is a leading cause of death. To understand the mechanisms involved in protective antibody and pathological inflammatory responses during bacteremia, we have been studying the murine model of Borrelia hermsii infection. Toll-like receptor (TLR) signaling plays an important role in generating the rapid anti-B.

View Article and Find Full Text PDF

The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells.

View Article and Find Full Text PDF

Young children are impaired in their response to T cell-independent (TI) Ags, such as pneumococcal polysaccharide (PPS). B lymphopoeisis early in life is IL-7 independent, whereas in adults it is IL-7 dependent. Therefore, we hypothesized that IL-7-driven B lymphopoiesis plays a critical role in promoting Ab responses to TI Ags.

View Article and Find Full Text PDF

Relapsing fever borreliosis is a multisystemic infection characterized primarily by bacteremia but can extend to the CNS. The incidence of CNS disease manifestations in humans depends on the infecting relapsing fever Borrelia species. In the murine model of Borrelia hermsii infection we found high incidence of distinct signs of CNS disease that ranged from a flaccid tail to complete paralysis of hind limbs.

View Article and Find Full Text PDF

Host susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.

View Article and Find Full Text PDF

Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS.

View Article and Find Full Text PDF