Publications by authors named "Kishore Bingi"

The gas sweetening process is essential for removing harmful acid gases, such as hydrogen sulfide (HS) and carbon dioxide (CO), from natural gas before delivery to end-users. Consequently, chemical absorption-based acid gas removal units (AGRUs) are widely implemented due to their high efficiency and reliability. The most common solvent used in AGRU is monodiethanolamine (MDEA), often mixed with piperazine (PZ) as an additive to accelerate acid gas capture.

View Article and Find Full Text PDF
Article Synopsis
  • The paper addresses the challenges of designing controllers for Multi-Input Multi-Output (MIMO) industrial processes, emphasizing the need for advanced control strategies due to dynamic interactions and changes.
  • It proposes an Iterative Learning Controller with dead-time compensation, utilizing a new hybrid optimization algorithm for both simulation and real-time testing on the Quadruple Tank System.
  • The results indicate significant improvements in system stability and performance, with the proposed controller reducing overshoot and settling time by nearly 30% faster in Single-Input Single-Output (SISO) contexts and over 14% faster in MIMO settings, supported by predictive modeling using Machine Learning techniques.
View Article and Find Full Text PDF

With the escalating demand for Radio Frequency Identification (RFID) technology and the Internet of Things (IoT), there is a growing need for sustainable and autonomous power solutions to energize low-powered devices. Consequently, there is a critical imperative to mitigate dependency on batteries during passive operation. This paper proposes the conceptual framework of rectenna architecture-based radio frequency energy harvesters' performance, specifically optimized for low-power device applications.

View Article and Find Full Text PDF

Dry gas pipelines can encounter various operational, technical, and environmental issues, such as corrosion, leaks, spills, restrictions, and cyber threats. To address these difficulties, proactive maintenance and management and a new technological strategy are needed to increase safety, reliability, and efficiency. A novel neural network model for forecasting the life of a dry gas pipeline system and detecting the metal loss dimension class that is exposed to a harsh environment is presented in this study to handle the missing data.

View Article and Find Full Text PDF

Wireless technology is becoming increasingly critical in industrial environments in recent years, and the popular wireless standards are WirelessHART, ZigBee, WLAN and ISA100.11a, commonly used in closed-loop systems. However, wireless networks in closed-loop control experience packet loss or drops, system delay and data threats, leading to process instability and catastrophic system failure.

View Article and Find Full Text PDF

A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization and the Arithmetic Optimization Algorithm to improve position relocation problems, premature convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was evaluated on various benchmark functions and compared with other optimization algorithms, namely Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf Optimization, and Harris Hawk Optimization.

View Article and Find Full Text PDF

A smart grid is a modern electricity system enabling a bidirectional flow of communication that works on the notion of demand response. The stability prediction of the smart grid becomes necessary to make it more reliable and improve the efficiency and consistency of the electrical supply. Due to sensor or system failures, missing input data can often occur.

View Article and Find Full Text PDF

Saybolt color is a standard measurement scale used to determine the quality of petroleum products and the appropriate refinement process. However, the current color measurement methods are mostly laboratory-based, thereby consuming much time and being costly. Hence, we designed an automated model based on an artificial neural network to predict Saybolt color.

View Article and Find Full Text PDF

This paper proposes a novel hybrid arithmetic-trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA.

View Article and Find Full Text PDF

Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments.

View Article and Find Full Text PDF