Identification of high-risk carotid plaques in asymptomatic patients remains a challenging but crucial step in stroke prevention. The challenge is to accurately monitor the development of high-risk carotid plaques and promptly identify patients, who are unresponsive to best medical therapy, and hence targeted for carotid surgical interventions to prevent stroke. Inflammation is a key operator in destabilisation of plaques prior to clinical sequelae.
View Article and Find Full Text PDFIdentification of patients with high-risk asymptomatic carotid plaques remains a challenging but essential step in stroke prevention. Current selection criteria for intervention in carotid disease are still determined by symptomatology and degree of luminal stenosis. This strategy has been less effective in identifying the high-risk asymptomatic individual patients.
View Article and Find Full Text PDFHigh doses bone morphogenetic protein 2 (BMP-2) have resulted in a series of complications in spinal fusion. We previously established a polyelectrolyte complex (PEC) carrier system that reduces the therapeutic dose of BMP-2 in both rodent and porcine spinal fusion models. This study aimed to evaluate the safety and efficacy of the combination of bone marrow mesenchymal stem cells (BMSCs) and low dose BMP-2 delivered by PEC for bone regeneration in a porcine model of anterior lumbar interbody spinal fusion (ALIF) application.
View Article and Find Full Text PDFIdentification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff.
View Article and Find Full Text PDFIdentification of patients with high-risk asymptomatic carotid plaques remains a challenging but crucial step in stroke prevention. Inflammation is the key factor that drives plaque instability. Currently, there is no imaging tool in routine clinical practice to assess the inflammatory status within atherosclerotic plaques.
View Article and Find Full Text PDFtracking of transplanted stem cells to monitor their migration, biodistribution, and engraftment in the host tissue is important for assessing the efficacy of stem cell therapeutics. Here, we report a biomineral nanocontrast agent, iron doped calcium phosphate nanoparticles (nCP:Fe), for the tracking of stem cells in brain using magnetic resonance imaging (MRI). We have synthesized ∼100 nm sized nCP nanoparticles doped with 9.
View Article and Find Full Text PDFStem Cells Int
November 2019
Background: While regenerative stem cell therapy for ischemic heart disease has moved into phase 3 studies, little is still known about retention and migration of cell posttransplantation. In human studies, the ability to track transplanted cells has been limited to labeling with radioisotopes and tracking using nuclear imaging. This method is limited by low resolution and short half-lives of available radioisotopes.
View Article and Find Full Text PDFThe original version of the article unfortunately contained an error.
View Article and Find Full Text PDFNeuropathic pain remains underrecognised and ineffectively treated in chronic pain sufferers. Consequently, their quality of life is considerably reduced, and substantial healthcare costs are incurred. The anatomical location of pain must be identified for definitive diagnosis, but current neuropsychological tools cannot do so.
View Article and Find Full Text PDFNeuroimaging endophenotypes in animal models provide an objective and translationally-relevant alternative to cognitive/behavioral traits in human psychopathologies. Metabolic alterations, such as those involved in the glutamate-cycle, have been proposed to play a preponderant role in both depression and schizophrenia. Chronic Mild Unpredictable Stress (CMUS) and sub-chronic administration of NMDA receptor antagonist generate animal models of depression and schizophrenia, respectively.
View Article and Find Full Text PDFRepairing damaged joint cartilage remains a significant challenge. Treatment involving microfracture, tissue grafting, or cell therapy provides some benefit, but seldom regenerates lost articular cartilage. Providing a point-of-care solution that is cell and tissue free has the potential to transform orthopedic treatment for such cases.
View Article and Find Full Text PDFThe biocompatibility and performance of reagents for in vivo contrast-enhanced magnetic resonance imaging (MRI) are essential for their translation to the clinic. The quality of the surface coating of nanoparticle-based MRI contrast agents, such as ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), is critical to ensure high colloidal stability in biological environments, improved magnetic performance, and dispersion in circulatory fluids and tissues. Herein, we report the design of a library of 21 peptides and ligands and identify highly stable self-assembled monolayers on the USPIONs' surface.
View Article and Find Full Text PDFPeripheral arterial disease is a major cause of limb loss and its prevalence is increasing worldwide. As most standard-of-care therapies yield only unsatisfactory outcomes, more options are needed. Recent cell- and molecular-based therapies that have aimed to modulate vascular endothelial growth factor-165 (VEGF) levels have not yet been approved for clinical use due to their uncertain side effects.
View Article and Find Full Text PDFThere is currently intense interest in new methods for understanding the fate of therapeutically-relevant cells, such as mesenchymal stem cells (MSCs). The absence of a confounding background signal and consequent unequivocal assignment makes 19F MRI one of the most attractive modalities for the tracking of injected cells in vivo. We describe here the synthesis of novel partly-fluorinated polymeric nanoparticles with small size and high fluorine content as MRI agents.
View Article and Find Full Text PDFThe transient receptor potential melastatin 4 (TRPM4) channel has been suggested to play a key role in the treatment of ischemic stroke. However, in vivo evaluation of TRPM4 channel, in particular by direct channel suppression, is lacking. In this study, we used multimodal imaging to assess edema formation and quantify the amount of metabolically functional brain salvaged after a rat model of stroke reperfusion.
View Article and Find Full Text PDFMetabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate.
View Article and Find Full Text PDFBackground Context: Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site.
View Article and Find Full Text PDFObjective: Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques.
View Article and Find Full Text PDFBrain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L regularized variational model for bias correction and brain extraction.
View Article and Find Full Text PDFBackground: There is currently no clinical imaging technique available to assess the degree of inflammation associated with atherosclerotic plaques. This study aims to develop targeted superparamagnetic particles of iron oxide (SPIO) as a magnetic resonance imaging (MRI) probe for detecting inflamed endothelial cells.
Methods: The in vitro study consists of the characterisation and detection of inflammatory markers on activated endothelial cells by immunocytochemistry and MRI using biotinylated anti-P-selectin and anti-VCAM-1 (vascular cell adhesion molecule 1) antibody and streptavidin conjugated SPIO.
Introduction: Peripheral artery disease can lead to severe disability and limb loss. Therapeutic strategies focussing on macrovascular repair have shown benefit but have not significantly reduced amputation rates in progressive PAD. Proangiogenic small molecule therapies may substantially improve vascularisation in limb ischemia.
View Article and Find Full Text PDFStudy Design: The study was based on porcine posterolateral fusion model.
Objective: The study aims to prove that polyelectrolyte complex (PEC) carrier could enhance the efficacy and safety profile of bone morphogenetic protein-2 (BMP-2).
Summary Of Background Data: BMP-2 was introduced to enhance posterolateral fusion; however, extremely high doses of this molecule were often used which contributed to various complications.
Stimuli-responsive nanoprobes that combine both fluorescence and magnetic resonance imaging (MRI) are anticipated to be highly beneficial for tumor visualization with high imaging sensitivity. By employing an interfacial templating scheme, a pH-activatable fluorescence/MRI dual-modality imaging nanoprobe is successfully developed based on the coencapsulation of MnO nanoparticles and coumarin-545T inside a hybrid silica nanoshell. To promote cancer cell targeting with high-specificity, the nanoprobes are also conjugated with folic acid to establish a greater affinity for cancer cells that over-express folate receptors on their cell membrane.
View Article and Find Full Text PDFObjective: The aim was to auto-segment and characterize brown adipose, white adipose and muscle tissues in rats by multi-parametric magnetic resonance imaging with validation by histology and UCP1.
Materials And Methods: Male Wistar rats were randomized into two groups for thermoneutral (n = 8) and cold exposure (n = 8) interventions, and quantitative MRI was performed longitudinally at 7 and 11 weeks. Prior to imaging, rats were maintained at either thermoneutral body temperature (36 ± 0.
Perinatal asphyxia is a significant cause of death or long-term neurodevelopmental impairment. Hypothermia, currently the only effective treatment, leads to modest improvements, but new therapeutic strategies are required. Umbilical cord blood (UCB) mononuclear cells have potent anti-inflammatory properties and may reduce neuropathology.
View Article and Find Full Text PDF