Solar-blind self-powered UV-C photodetectors suffer from low performance, while heterostructure-based devices require complex fabrication and lack p-type wide band gap semiconductors (WBGSs) operating in the UV-C region (<290 nm). In this work, we mitigate the aforementioned issues by demonstrating a facile fabrication process for a high-responsivity solar-blind self-powered UV-C photodetector based on a p-n WBGS heterojunction structure, operating under ambient conditions. Here, heterojunction structures based on p-type and n-type ultra-wide band gap WBGSs (i.
View Article and Find Full Text PDFScaling-down the size of semiconductor cavity lasers and engineering their electromagnetic environment in the Purcell regime can bring about spectacular advance in nanodevices fabrication. We report here an unprecedented observation of a coherent Cathodoluminescence from GaN nanocavities (20-100 nm). Incident lower energy (< 15 kV) electron beams excite the band edge UV emission from the walls of the network whereas for higher energies, the emitted photons are spontaneously down converted into NIR and preferentially emerge from the nanocavities.
View Article and Find Full Text PDFA hybrid system consisting of Ag nanoparticles dispersed onto a GaN nanowall network (GaN NWN) exhibited characteristic optical properties and electronic band structure. Surface-sensitive XPS studies of this high-surface-area system revealed the presence of a high surface charge carrier concentration due to dangling bonds, which resulted in a high metal-like surface conductivity. The low coverage of absorbed Ag led to the nanocluster formation, facilitating charge transfer from GaN to Ag, and thereby further increasing the surface charge carriers.
View Article and Find Full Text PDF