Publications by authors named "Kishor Bhakat"

Endogenous DNA damage occurs throughout the cell cycle, with cells responding differently at various stages. The base excision repair (BER) pathway predominantly repairs damaged bases in the genome. While extensively studied in interphase cells, it is unknown if BER operates in mitosis and how apurinic/apyrimidinic (AP) sites, intermediates in the BER pathway that inhibit transcriptional elongation, are processed for post-mitotic gene reactivation.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments.

View Article and Find Full Text PDF

The base excision repair (BER) is the primary damage repair pathway for repairing most of the endogenous DNA damage including oxidative base lesions, apurinic/apyrimidinic (AP) sites, and single-strand breaks (SSBs) in the genome. Repair of these damages in cells relies on sequential recruitment and coordinated actions of multiple DNA repair enzymes, which include DNA glycosylases (such as OGG1), AP-endonucleases (APE1), DNA polymerases, and DNA ligases. APE1 plays a key role in the BER pathway by repairing the AP sites and SSBs in the genome.

View Article and Find Full Text PDF

MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection.

View Article and Find Full Text PDF

Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair.

View Article and Find Full Text PDF

Medulloblastoma (MB) is a malignant pediatric brain tumor with a poor prognosis. Post-surgical radiation and cisplatin-based chemotherapy have been a mainstay of treatment, which often leads to substantial neurocognitive impairments and morbidity, highlighting the need for a novel therapeutic target to enhance the sensitivity of MB tumors to cytotoxic therapies. We performed a comprehensive study using a cohort of 71 MB patients' samples and pediatric MB cell lines and found that MB tumors have elevated levels of nucleosome remodeling FACT (FAcilitates Chromatin Transcription) complex and DNA repair enzyme AP-endonuclease1 (APE1).

View Article and Find Full Text PDF

Background: Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) plays a critical role in DNA base excision repair (BER) pathway and has been reported to be overexpressed in multiple cancers. Previously, we have shown that histone chaperone FACT complex (Facilitates Chromatin Transcription, a heterodimer of SSRP1 and SPT16 proteins) facilitates the chromatin access and DNA repair function of APE1, and their expression levels are correlated with promoting drug resistance in cancer. FACT inhibitor has been introduced in phase I and II clinical trials for chemosensitization of advanced solid cancers.

View Article and Find Full Text PDF

Background: Single-cell sequencing enables us to better understand genetic diseases, such as cancer or autoimmune disorders, which are often affected by changes in rare cells. Currently, no existing software is aimed at identifying single nucleotide variations or micro (1-50 bp) insertions and deletions in single-cell RNA sequencing (scRNA-seq) data. Generating high-quality variant data is vital to the study of the aforementioned diseases, among others.

View Article and Find Full Text PDF

In addition to the key roles of reversible acetylation of histones in chromatin in epigenetic regulation of gene expression, acetylation of nonhistone proteins by histone acetyltransferases (HATs) p300 and CBP is involved in DNA transactions, including repair of base damages and strand breaks. We characterized acetylation of human NEIL1 DNA glycosylase and AP-endonuclease 1 (APE1), which initiate repair of oxidized bases and single-strand breaks (SSBs), respectively. Acetylation induces localized conformation change because of neutralization of the positive charge of specific acetyl-acceptor Lys residues, which are often present in clusters.

View Article and Find Full Text PDF

Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome.

View Article and Find Full Text PDF

Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers.

View Article and Find Full Text PDF

Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway.

View Article and Find Full Text PDF

Protein posttranslational modifications (PTMs), including acetylation, have emerged as important regulators for controlling many cellular processes. DNA base excision repair (BER), a highly coordinated multistep cellular process, is primarily involved in the repair of both endogenous and drug-induced exogenous DNA base damages. BER relies on sequential recruitment and coordinated actions of multiple proteins.

View Article and Find Full Text PDF

Posttranslational modifications of DNA repair proteins have been linked to their function. However, it is not clear if posttranslational acetylation affects subcellular localization of these enzymes. Here, we show that the human DNA glycosylase NEIL1, which is involved in repair of both endo- and exogenously generated oxidized bases via the base excision repair (BER) pathway, is acetylated by histone acetyltransferase p300.

View Article and Find Full Text PDF

Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3.

View Article and Find Full Text PDF

The human apurinic/apyrimidinic endonuclease 1 (APE1) is a pleiotropic nuclear protein with roles in DNA base excision repair pathway as well as in regulation of transcription. Recently, the presence of extracellular plasma APE1 was reported in endotoxemic rats. However, the biological significance and the extracellular function of APE1 remain unclear.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway.

View Article and Find Full Text PDF

Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1), a ubiquitous and multifunctional protein, plays an essential role in the repair of both endogenous and drug-induced DNA damages in the genome. Unlike its E.coli counterpart Xth, mammalian APE1 has a unique N-terminal domain and possesses both DNA damage repair and transcriptional regulatory functions.

View Article and Find Full Text PDF

The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein involved in repair of oxidative DNA damage as well as in transcriptional regulation, is often overexpressed in tumor cells. APE1 was earlier shown to stimulate p53's DNA binding and its transactivation function in the expression of cyclin-dependent kinase inhibitor p21 (CDKN1A) gene. Here, we show APE1's stable binding to p53 cis elements which are required for p53-mediated activation of p21 in p53-expressing wild type HCT116 cells.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1) is the main abasic endonuclease in the base excision repair (BER) pathway of DNA lesions caused by oxidation/alkylation in mammalian cells; within nucleoli it interacts with nucleophosmin and rRNA through N-terminal Lys residues, some of which (K(27)/K(31)/K(32)/K(35)) may undergo acetylation in vivo. Here we study the functional role of these modifications during genotoxic damage and their in vivo relevance. We demonstrate that cells expressing a specific K-to-A multiple mutant are APE1 nucleolar deficient and are more resistant to genotoxic treatment than those expressing the wild type, although they show impaired proliferation.

View Article and Find Full Text PDF

Objectives: Apurinic/apyrimidinic-endonuclease 1 (APE1) heterozygous mice have chronically elevated blood pressure. Renin of the renin-angiotensin (ANG) system for blood pressure maintenance regulates production of ANG II, a vasoactive hormone. Renin expression and secretion from kidney juxtaglomerular cells are regulated by intracellular calcium.

View Article and Find Full Text PDF

Reactive oxygen species (ROS), generated endogenously during respiration or exogenously by genotoxic agents, induce oxidized bases and single-strand breaks (SSBs) in DNA that are repaired via the base excision/SSB repair (BER/SSBR) pathway in both the nucleus and mitochondria. Tightly regulated BER/SSBR with multiple sub-pathways is highly complex, and is linked to the replication and transcription. The repair-initiating DNA glycosylases (DGs) or AP-endonuclease (APE1) control the sub-pathway by stably interacting with downstream proteins usually via their common interacting domain (CID).

View Article and Find Full Text PDF