Publications by authors named "Kisha Watkins"

Pseudomonas aeruginosa PA7 is a non-respiratory human isolate from Argentina that is multiresistant to antibiotics. We first sequenced gyrA, gyrB, parC, parE, ampC, ampR, and several housekeeping genes and found that PA7 is a taxonomic outlier. We report here the complete sequence of the 6,588,339 bp genome, which has only about 95% overall identity to other strains.

View Article and Find Full Text PDF

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi.

View Article and Find Full Text PDF

The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides.

View Article and Find Full Text PDF

Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections.

View Article and Find Full Text PDF

Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients.

View Article and Find Full Text PDF

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans.

View Article and Find Full Text PDF

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined.

View Article and Find Full Text PDF
Article Synopsis
  • Bacillus anthracis, the bacterium that causes inhalational anthrax, has key virulence factors located on two specific plasmids, pXO1 and pXO2.
  • A complete analysis of the B. anthracis Ames chromosome revealed additional genes potentially linked to its pathogenicity, including those involved in iron acquisition and surface proteins that could be targets for vaccines.
  • Comparative studies showed that although chromosomal genes are similar among related Bacillus species, the plasmid genes exhibited more variability, indicating that plasmids may move more easily between strains.
View Article and Find Full Text PDF