Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patient-specific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12).
View Article and Find Full Text PDFBackground: Nanomedicine can improve traditional therapies by enhancing the controlled release of drugs at targeted tissues in the body. However, there still exists disease- and therapy-specific barriers that limit the efficacy of such treatments. A major challenge in developing effective therapies for one of the most aggressive brain tumors, glioblastoma (GBM), is affecting brain cancer cells while avoiding damage to the surrounding healthy brain parenchyma.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
March 2020
Background: Sacrificing the superior petrosal vein (SPV) is controversial during a microvascular decompression (MVD). There have been multiple reports of complications including life-threatening brainstem infarction and cerebellar edema.
Objective: To analyze the potential for vascular complications when the SPV is sacrificed during an MVD.
Objective: Trigeminal neuralgia (TN) is a neuropathic pain disorder characterized by severe, lancinating facial pain that is commonly treated with neuropathic medication, percutaneous rhizotomy, and/or microvascular decompression (MVD). Patients who are not found to have distinct arterial compression during MVD present a management challenge. In 2013, the authors reported on a small case series of such patients in whom glycerin was injected intraoperatively into the cisternal segment of the trigeminal nerve.
View Article and Find Full Text PDF