Publications by authors named "Kiselev L"

Article Synopsis
  • A new technology for comparing genomes using NotI-microarrays has been developed, which analyzes tumor and normal DNA to identify genetic changes.
  • The study focused on human chromosome 3, examining 200 tumor samples from various organs and found significant genetic alterations in specific genes linked to cancer.
  • The alterations included deletions and methylation changes, confirmed by additional genetic testing methods, highlighting the potential of this technology for cancer research.
View Article and Find Full Text PDF

Termination of translation in eukaryotes is governed by two polypeptide chain release factors. The middle (M) domain of the class 1 translation termination factor eRF1 contains the strictly conserved GGQ motif and involved in hydrolysis of the peptidyl-tRNA ester bond within the peptidyl transferase center of the large ribosome subunit. Heteronuclear NMR spectroscopy was used to map the interaction interface of the M-domain of human termination factor eRF1 with eukaryotic ribosomes.

View Article and Find Full Text PDF

A properties of atomic models of structure of eukaryotic triple complex eRF1 . mRNA . tRNAPhe containing human class-1 polypeptide release factor eRF1 at the A-site of human 80S ribosome, mRNA and P-site tRNAPhe, obtained before, are considered.

View Article and Find Full Text PDF

In universal-code eukaryotes, a single class-1 translation termination factor eRF1 decodes all three stop codons, UAA, UAG, and UGA. In some ciliates with variant genetic codes one or two stop codons are used to encode amino acid(s) and are not recognized by eRF1. In Stylonychia, UAG and UAA codons are reassigned as glutamine codons, and in Euplotes, UGA is reassigned as cysteine codon.

View Article and Find Full Text PDF

Models of atomic structure of eukaryotic translation termination complex containing mRNA, P-site tRNAPhe, human class-1 polypeptide release factor eRF1 and 80S ribosome were constructed. The method of computational modeling was applied. The modeling was based on the functional and structural similarity between tRNA and eFR1 bound in the ribosomal A site.

View Article and Find Full Text PDF

Lung cancer is one of the most frequent neoplasia in the Russia, the United States and Europe. This cancer is associated with functional activity changes of many genes. In the present study TIMP3, DAPK1 and AKR1B10 genes transcription analysis of squamous cell lung cancer specimens was carried out using reverse transcription-PCR.

View Article and Find Full Text PDF

RHOA protein, a member of small GTPases family, is implicated in cell morphogenesis, adhesion, and in cell cycle regulation. RHOA gene (3p21.31) exhibits cell transformation activity, and therefore gene is considered as a potential oncogene.

View Article and Find Full Text PDF

Translation termination in eukaryotes is governed by two proteins, belonging to the class-1 (eRF1) and class-2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to GDP and inorganic phosphate in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA and peptidyl-tRNA but needs the presence of eRF1. It's known that eRF1 and eRF3 interact with each other in vitro and in vivo via their C-terminal regions.

View Article and Find Full Text PDF

Thermal denaturation of eukaryotic class-1 translation termination factor eRF1 and its mutants was examined using differential scanning microcalorimetry (DSK). Changes of free energy caused by mutants in the N domain of human eRF1 were calculated. Melting of eRF1 molecule composed of three individual domains is cooperative.

View Article and Find Full Text PDF

Ninety four NotI-STS markers to seventy two individual NotI clones were developed basing on DNA nucleotide sequences from NotI-"jumping" and "linking" NotI-libraries of human chromosome 3. The localization of NotI-STS markers and their ordering on chromosome was established by combined data of RH-mapping (our data), contig-mapping, cytogenetic mapping and in silico mapping. Performed comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions, 3p21.

View Article and Find Full Text PDF

Methylation of the promoter CpG-islands of the candidate tumor suppressor gene RASSF1A (3p21.31) was studied in primary tumors of kidney, breast and ovary (172 cases). Methylation-specific PCR (MSP) and methyl-sensitive restriction endonuclease digestion followed by PCR (MSRA) were applied.

View Article and Find Full Text PDF

The integral structural parameters and the shape of the molecule of human translation termination factor eRF1 were determined from the small-angle X-ray scattering in solution. The molecular shapes were found by bead modeling with nonlinear minimization of the root-mean-square deviation of the calculated from the experimental scattering curve. Comparisons of the small-angle scattering curves computed for atomic-resolution structures of eRF1 with the experimental data on scattering from solution testified that the crystal and the solution conformations are close.

View Article and Find Full Text PDF

The review considers the results obtained by several groups in the fields of identification of polymorphic loci in the human genome, localization and analysis of genes associated with epithelial tumors of various origins, and generation of molecular markers of socially important oncological diseases. In the first two cases, work was initiated and supported by the Russian program Human Genome. To find new polymorphic loci in the human genome, di-, tri-, and tetranucleotide repeats were searched for in an ordered cosmid library of chromosome 13, NotI and cosmid clones of chromosome 3, and in brain EST.

View Article and Find Full Text PDF

Reviewed and discussed are the recent data demonstrating profound functional similarity between class-1 translation termination factors (RF1 and RF2 in prokaryotes, aRF1 and eRF1 in Archaea and eukaryotes, respectively) and aminoacyl-tRNA as regards their roles in the course of translation on the ribosome. Functional analogy of these two components of the cell protein-synthesizing machinery was suggested long ago; however, numerous experimental proofs have been obtained only recently. This similarity implies that decoding of the genetic information by the ribosomal machine is performed similarly at all stages of translation, though tRNA plays the main role at initiation and elongation, while the protein is most important for termination.

View Article and Find Full Text PDF

Studies of the recent decade, including sequencing of numerous human genome regions, allowed a great progress in detection of new tumor suppressor genes (TSG) and development of new means of their identification and analysis. Effective methods of genome scanning and TSG identification combine DNA array techniques and subtraction hybridization. Alternative ways take advantage of new extrachromosomal vector systems (pETE, pETR) and the functional gene inactivation test.

View Article and Find Full Text PDF

The study enrolled male patients with fever admitted to Ulyanovsk city hospital in November-December 2000 with diagnosis of hemorrhagic fever with renal syndrome (HFRS). The diagnosis was confirmed serologically. 10 patients received recombinant interleukin 2 (rIL-2) in a dose 250,000 IU/day for 5 days.

View Article and Find Full Text PDF

Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10-15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes.

View Article and Find Full Text PDF

Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes.

View Article and Find Full Text PDF

Analysis of DNA sequences of the human chromosomes 21 and 22 performed using a specially designed MegaGene software allowed us to obtain the following results. Purine and pyrimidine nucleotide residues are unevenly distributed along both chromosomes, displaying maxima and minima (Y waves phi) with a period of about 3 Mbp. Distribution of G + C along both chromosomes has no distinct maxima and minima, however, chromosome 21 contains considerably less G + C than chromosome 22.

View Article and Find Full Text PDF